BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 2674618)

  • 1. Chemical modification of the anion-transport system with phenylglyoxal.
    Bjerrum PJ
    Methods Enzymol; 1989; 173():466-94. PubMed ID: 2674618
    [No Abstract]   [Full Text] [Related]  

  • 2. Functional asymmetry of the anion-exchange protein, capnophorin: effects on substrate and inhibitor binding.
    Knauf PA; Brahm J
    Methods Enzymol; 1989; 173():432-53. PubMed ID: 2674616
    [No Abstract]   [Full Text] [Related]  

  • 3. Studies on inactivation of anion transport in human red blood cell membrane by reversibly and irreversibly acting arginine-specific reagents.
    Julien T; Zaki L
    J Membr Biol; 1988 Jun; 102(3):217-24. PubMed ID: 3172180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical properties of the anion transport inhibitory binding site of arginine-specific reagents in human red blood cell membranes.
    Julien T; Betakis E; Zaki L
    Biochim Biophys Acta; 1990 Jul; 1026(1):43-50. PubMed ID: 2378880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anion transport in red blood cells and arginine specific reagents. (1). Effect of chloride and sulfate ions on phenylglyoxal sensitive sites in the red blood cell membrane.
    Zaki L
    Biochem Biophys Res Commun; 1983 Jan; 110(2):616-24. PubMed ID: 6838541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-hydroxysulfosuccinimido active esters and the L-(+)-lactate transport protein in rabbit erythrocytes.
    Donovan JA; Jennings ML
    Biochemistry; 1986 Apr; 25(7):1538-45. PubMed ID: 3707891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Irreversible inactivation of red cell chloride exchange with phenylglyoxal, and arginine-specific reagent.
    Wieth JO; Bjerrum PJ; Borders CL
    J Gen Physiol; 1982 Feb; 79(2):283-312. PubMed ID: 6276497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three different actions of phenylglyoxal on band 3 protein-mediated anion transport across the red blood cell membrane.
    Gärtner EM; Liebold K; Legrum B; Fasold H; Passow H
    Biochim Biophys Acta; 1997 Jan; 1323(2):208-22. PubMed ID: 9042344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anion transport in red blood cells and arginine-specific reagents. Interaction between the substrate-binding site and the binding site of arginine-specific reagents.
    Zaki L; Julien T
    Biochim Biophys Acta; 1985 Sep; 818(3):325-32. PubMed ID: 4041441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hagfish (Eptatretus stouti) erythrocytes show minimal chloride transport activity.
    Ellory JC; Wolowyk MW; Young JD
    J Exp Biol; 1987 May; 129():377-83. PubMed ID: 3585243
    [No Abstract]   [Full Text] [Related]  

  • 11. Monocarboxylate transport in red blood cells: kinetics and chemical modification.
    Deuticke B
    Methods Enzymol; 1989; 173():300-29. PubMed ID: 2674614
    [No Abstract]   [Full Text] [Related]  

  • 12. Chemical labelling of arginyl-residues involved in anion transport mediated by human band 3 protein and some aspects of its location in the peptide chain.
    Zaki L; Böhm R; Merckel M
    Cell Mol Biol (Noisy-le-grand); 1996 Nov; 42(7):1053-63. PubMed ID: 8960780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards the localization of the essential arginine residues in the band 3 protein of human red blood cell membranes.
    Böhm R; Zaki L
    Biochim Biophys Acta; 1996 Apr; 1280(2):238-42. PubMed ID: 8639699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chloride--bicarbonate exchange in red blood cells: physiology of transport and chemical modification of binding sites.
    Wieth JO; Andersen OS; Brahm J; Bjerrum PJ; Borders CL
    Philos Trans R Soc Lond B Biol Sci; 1982 Dec; 299(1097):383-99. PubMed ID: 6130537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective phenylglyoxalation of functionally essential arginyl residues in the erythrocyte anion transport protein.
    Bjerrum PJ; Wieth JO; Borders CL
    J Gen Physiol; 1983 Apr; 81(4):453-84. PubMed ID: 6854266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mechanisms of band 3 inhibitors. 2. Channel blockers.
    Falke JJ; Chan SI
    Biochemistry; 1986 Dec; 25(24):7895-8. PubMed ID: 3801447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics and mechanism of anion transport in red blood cells.
    Jennings ML
    Annu Rev Physiol; 1985; 47():519-33. PubMed ID: 3922288
    [No Abstract]   [Full Text] [Related]  

  • 18. Molecular mechanisms of band 3 inhibitors. 1. Transport site inhibitors.
    Falke JJ; Chan SI
    Biochemistry; 1986 Dec; 25(24):7888-94. PubMed ID: 3801446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crosslinking of membrane proteins during erythrocyte ageing.
    Gaczyńska M; Bartosz G
    Int J Biochem; 1986; 18(4):377-82. PubMed ID: 3709928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methods for study of the synthesis and maturation of the erythrocyte anion transport protein.
    Lodish HF; Braell WA
    Methods Enzymol; 1983; 96():257-67. PubMed ID: 6361455
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.