BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 2674624)

  • 1. Reconstitution of transport from the ER to the Golgi complex in yeast using microsomes and permeabilized yeast cells.
    Ruohola H; Kabcenell AK; Ferro-Novick S
    Methods Cell Biol; 1989; 31():143-54. PubMed ID: 2674624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstitution of protein transport from the endoplasmic reticulum to the Golgi complex in yeast: the acceptor Golgi compartment is defective in the sec23 mutant.
    Ruohola H; Kabcenell AK; Ferro-Novick S
    J Cell Biol; 1988 Oct; 107(4):1465-76. PubMed ID: 3049622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation of a functional vesicular intermediate that mediates ER to Golgi transport in yeast.
    Groesch ME; Ruohola H; Bacon R; Rossi G; Ferro-Novick S
    J Cell Biol; 1990 Jul; 111(1):45-53. PubMed ID: 2195039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Yeast vacuolar proenzymes are sorted in the late Golgi complex and transported to the vacuole via a prevacuolar endosome-like compartment.
    Vida TA; Huyer G; Emr SD
    J Cell Biol; 1993 Jun; 121(6):1245-56. PubMed ID: 8509446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphological analysis of protein transport from the ER to Golgi membranes in digitonin-permeabilized cells: role of the P58 containing compartment.
    Plutner H; Davidson HW; Saraste J; Balch WE
    J Cell Biol; 1992 Dec; 119(5):1097-116. PubMed ID: 1447290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A homologous cell-free system for studying protein translocation across the endoplasmic reticulum membrane in fission yeast.
    Brennwald P; Wise JA
    Yeast; 1994 Feb; 10(2):159-72. PubMed ID: 8203158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mammalian homolog of yeast Sec13p is enriched in the intermediate compartment and is essential for protein transport from the endoplasmic reticulum to the Golgi apparatus.
    Tang BL; Peter F; Krijnse-Locker J; Low SH; Griffiths G; Hong W
    Mol Cell Biol; 1997 Jan; 17(1):256-66. PubMed ID: 8972206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical requirements for the targeting and fusion of ER-derived transport vesicles with purified yeast Golgi membranes.
    Lupashin VV; Hamamoto S; Schekman RW
    J Cell Biol; 1996 Feb; 132(3):277-89. PubMed ID: 8636207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signal-mediated retrieval of a membrane protein from the Golgi to the ER in yeast.
    Gaynor EC; te Heesen S; Graham TR; Aebi M; Emr SD
    J Cell Biol; 1994 Nov; 127(3):653-65. PubMed ID: 7962050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular trafficking and metabolic turnover of yeast prepro-alpha-factor-SRIF precursors in GH3 cells.
    Lee MA; Cheong KH; Shields D; Park SD; Hong SH
    Exp Mol Med; 2002 Sep; 34(4):285-93. PubMed ID: 12515394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstitution of protein transport using broken yeast spheroplasts.
    Baker D; Schekman R
    Methods Cell Biol; 1989; 31():127-41. PubMed ID: 2674623
    [No Abstract]   [Full Text] [Related]  

  • 12. Membrane protein retrieval from the Golgi apparatus to the endoplasmic reticulum (ER): characterization of the RER1 gene product as a component involved in ER localization of Sec12p.
    Sato K; Nishikawa S; Nakano A
    Mol Biol Cell; 1995 Nov; 6(11):1459-77. PubMed ID: 8589449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endoplasmic reticulum-through-Golgi transport assay based on O-glycosylation of native glycophorin in permeabilized erythroleukemia cells: role for Gi3.
    Wilson BS; Palade GE; Farquhar MG
    Proc Natl Acad Sci U S A; 1993 Mar; 90(5):1681-5. PubMed ID: 8446582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SED5 encodes a 39-kD integral membrane protein required for vesicular transport between the ER and the Golgi complex.
    Hardwick KG; Pelham HR
    J Cell Biol; 1992 Nov; 119(3):513-21. PubMed ID: 1400588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP.
    McCracken AA; Brodsky JL
    J Cell Biol; 1996 Feb; 132(3):291-8. PubMed ID: 8636208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. COPII vesicles derived from mammalian endoplasmic reticulum microsomes recruit COPI.
    Rowe T; Aridor M; McCaffery JM; Plutner H; Nuoffer C; Balch WE
    J Cell Biol; 1996 Nov; 135(4):895-911. PubMed ID: 8922375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-free transfer of the vesicular stomatitis virus G protein from an endoplasmic reticulum compartment of baby hamster kidney cells to a rat liver Golgi apparatus compartment for Man8-9 to Man5 processing.
    Paulik MA; Widnell CC; Whitaker-Dowling PA; Minnifield N; Morré DM; Morré DJ
    Arch Biochem Biophys; 1999 Jul; 367(2):265-73. PubMed ID: 10395743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two endoplasmic reticulum (ER) membrane proteins that facilitate ER-to-Golgi transport of glycosylphosphatidylinositol-anchored proteins.
    Barz WP; Walter P
    Mol Biol Cell; 1999 Apr; 10(4):1043-59. PubMed ID: 10198056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amino acid permeases require COPII components and the ER resident membrane protein Shr3p for packaging into transport vesicles in vitro.
    Kuehn MJ; Schekman R; Ljungdahl PO
    J Cell Biol; 1996 Nov; 135(3):585-95. PubMed ID: 8909535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstitution of transport of vesicular stomatitis virus G protein from the endoplasmic reticulum to the Golgi complex using a cell-free system.
    Balch WE; Wagner KR; Keller DS
    J Cell Biol; 1987 Mar; 104(3):749-60. PubMed ID: 3029144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.