BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 26747441)

  • 1. Cost-effective copper removal by electrosorption powered by microbial fuel cells.
    Yang J; Zhou M; Hu Y; Yang W
    Bioprocess Biosyst Eng; 2016 Mar; 39(3):511-9. PubMed ID: 26747441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrosorption driven by microbial fuel cells to remove phenol without external power supply.
    Yang J; Zhou M; Zhao Y; Zhang C; Hu Y
    Bioresour Technol; 2013 Dec; 150():271-7. PubMed ID: 24177161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of copper ions from wastewater by adsorption/electrosorption on modified activated carbon cloths.
    Huang CC; Su YJ
    J Hazard Mater; 2010 Mar; 175(1-3):477-83. PubMed ID: 19896268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Utilization of Copper (Ⅱ) Wastewater for Enhancing the Treatment of Chromium (Ⅵ) Wastewater in Microbial Fuel Cells].
    Xiong XM; Wu XY; Jia HH; Yong XY; Zhou J; Wei P
    Huan Jing Ke Xue; 2017 Oct; 38(10):4262-4270. PubMed ID: 29965210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous flow electrosorption-microbial fuel cell system for efficient removal of oxytetracycline without external electrical supply.
    Zhao W; Qu J; Zhou Y; Zhao J; Feng Y; Guo C; Lu Y; Zhao Y; Peijnenburg WJGM; Zhang YN
    Bioresour Technol; 2019 Oct; 290():121751. PubMed ID: 31301571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell.
    Tao HC; Liang M; Li W; Zhang LJ; Ni JR; Wu WM
    J Hazard Mater; 2011 May; 189(1-2):186-92. PubMed ID: 21377788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of Cu(II) in aqueous media by biosorption using water hyacinth roots as a biosorbent material.
    Zheng JC; Feng HM; Lam MH; Lam PK; Ding YW; Yu HQ
    J Hazard Mater; 2009 Nov; 171(1-3):780-5. PubMed ID: 19596517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemically enhanced adsorption of phenol on activated carbon fibers in basic aqueous solution.
    Han Y; Quan X; Chen S; Zhao H; Cui C; Zhao Y
    J Colloid Interface Sci; 2006 Jul; 299(2):766-71. PubMed ID: 16600273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper catalysis for enhancement of cobalt leaching and acid utilization efficiency in microbial fuel cells.
    Liu Y; Shen J; Huang L; Wu D
    J Hazard Mater; 2013 Nov; 262():1-8. PubMed ID: 24007993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of copper (II) from aqueous solution by adsorption onto low-cost adsorbents.
    Aydin H; Bulut Y; Yerlikaya C
    J Environ Manage; 2008 Apr; 87(1):37-45. PubMed ID: 17349732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics and mechanisms of Cu(II) sorption from aqueous solution by using bioflocculant MBFR10543.
    Guo J
    Appl Microbiol Biotechnol; 2015 Jan; 99(1):229-40. PubMed ID: 25301581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation of cesium from wastewater with copper hexacyanoferrate film in an electrochemical system driven by microbial fuel cells.
    Tao Q; Zhang X; Prabaharan K; Dai Y
    Bioresour Technol; 2019 Apr; 278():456-459. PubMed ID: 30711219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sorption of copper by chemically modified aspen wood fibers.
    Huang L; Ou Z; Boving TB; Tyson J; Xing B
    Chemosphere; 2009 Aug; 76(8):1056-61. PubMed ID: 19446861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Equilibrium studies for the sorption of zinc and copper from aqueous solutions using sugar beet pulp and fly ash.
    Pehlivan E; Cetin S; Yanik BH
    J Hazard Mater; 2006 Jul; 135(1-3):193-9. PubMed ID: 16368188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid removal of copper with magnetic poly-acrylic weak acid resin: quantitative role of bead radius on ion exchange.
    Fu L; Shuang C; Liu F; Li A; Li Y; Zhou Y; Song H
    J Hazard Mater; 2014 May; 272():102-11. PubMed ID: 24681592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorptive removal of Cu(II) from aqueous solutions using collagen-tannin resin.
    Sun X; Huang X; Liao XP; Shi B
    J Hazard Mater; 2011 Feb; 186(2-3):1058-63. PubMed ID: 21168961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions.
    Ijagbemi CO; Baek MH; Kim DS
    J Hazard Mater; 2009 Jul; 166(1):538-46. PubMed ID: 19131158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Treatment of Cu(2+)-containing wastewater by microbial fuel cell with excess sludge as anodic substrate].
    Liang M; Tao HC; Li SF; Li W; Zhang LJ; Ni JR
    Huan Jing Ke Xue; 2011 Jan; 32(1):179-85. PubMed ID: 21404684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrodeposited copper enhanced removal of 2,4-dichlorophenol in batch and flow reaction in Cu@CC-PS-MFC system.
    Zhu M; Wang H; Li C; Liu Q; Wang L; Tang J
    Chemosphere; 2023 Nov; 340():139801. PubMed ID: 37574086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-performance Cu
    Yang X; Liu L; Tan W; Qiu G; Liu F
    J Hazard Mater; 2018 Jul; 354():107-115. PubMed ID: 29729599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.