These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
735 related articles for article (PubMed ID: 26747745)
1. Directional patterns of cross frequency phase and amplitude coupling within the resting state mimic patterns of fMRI functional connectivity. Weaver KE; Wander JD; Ko AL; Casimo K; Grabowski TJ; Ojemann JG; Darvas F Neuroimage; 2016 Mar; 128():238-251. PubMed ID: 26747745 [TBL] [Abstract][Full Text] [Related]
2. Regional Patterns of Cortical Phase Synchrony in the Resting State. Casimo K; Darvas F; Wander J; Ko A; Grabowski TJ; Novotny E; Poliakov A; Ojemann JG; Weaver KE Brain Connect; 2016 Jul; 6(6):470-81. PubMed ID: 27019319 [TBL] [Abstract][Full Text] [Related]
3. Oscillation-Based Connectivity Architecture Is Dominated by an Intrinsic Spatial Organization, Not Cognitive State or Frequency. Mostame P; Sadaghiani S J Neurosci; 2021 Jan; 41(1):179-192. PubMed ID: 33203739 [TBL] [Abstract][Full Text] [Related]
4. Concurrent tACS-fMRI Reveals Causal Influence of Power Synchronized Neural Activity on Resting State fMRI Connectivity. Bächinger M; Zerbi V; Moisa M; Polania R; Liu Q; Mantini D; Ruff C; Wenderoth N J Neurosci; 2017 May; 37(18):4766-4777. PubMed ID: 28385876 [TBL] [Abstract][Full Text] [Related]
5. Value of Frequency Domain Resting-State Functional Magnetic Resonance Imaging Metrics Amplitude of Low-Frequency Fluctuation and Fractional Amplitude of Low-Frequency Fluctuation in the Assessment of Brain Tumor-Induced Neurovascular Uncoupling. Agarwal S; Lu H; Pillai JJ Brain Connect; 2017 Aug; 7(6):382-389. PubMed ID: 28657344 [TBL] [Abstract][Full Text] [Related]
6. Electrocorticography and the early maturation of high-frequency suppression within the default mode network. Weaver KE; Poliakov A; Novotny EJ; Olson JD; Grabowski TJ; Ojemann JG J Neurosurg Pediatr; 2018 Feb; 21(2):133-140. PubMed ID: 29192865 [TBL] [Abstract][Full Text] [Related]
7. Biophysical and neural basis of resting state functional connectivity: Evidence from non-human primates. Chen LM; Yang PF; Wang F; Mishra A; Shi Z; Wu R; Wu TL; Wilson GH; Ding Z; Gore JC Magn Reson Imaging; 2017 Jun; 39():71-81. PubMed ID: 28161319 [TBL] [Abstract][Full Text] [Related]
8. Frequency-specific functional connectivity in the brain during resting state revealed by NIRS. Sasai S; Homae F; Watanabe H; Taga G Neuroimage; 2011 May; 56(1):252-7. PubMed ID: 21211570 [TBL] [Abstract][Full Text] [Related]
9. Spontaneous Variation in Electrocorticographic Resting-State Connectivity. Casimo K; Madhyastha TM; Ko AL; Brown AB; Grassia F; Ojemann JG; Weaver KE Brain Connect; 2019 Jul; 9(6):488-499. PubMed ID: 31002014 [TBL] [Abstract][Full Text] [Related]
10. Source-reconstruction of the sensorimotor network from resting-state macaque electrocorticography. Hindriks R; Micheli C; Bosman CA; Oostenveld R; Lewis C; Mantini D; Fries P; Deco G Neuroimage; 2018 Nov; 181():347-358. PubMed ID: 29886144 [TBL] [Abstract][Full Text] [Related]
11. Exploring mechanisms of spontaneous functional connectivity in MEG: how delayed network interactions lead to structured amplitude envelopes of band-pass filtered oscillations. Cabral J; Luckhoo H; Woolrich M; Joensson M; Mohseni H; Baker A; Kringelbach ML; Deco G Neuroimage; 2014 Apr; 90():423-35. PubMed ID: 24321555 [TBL] [Abstract][Full Text] [Related]
12. Human cortical networking by probabilistic and frequency-specific coupling. Yan Y; Qian T; Xu X; Han H; Ling Z; Zhou W; Liu H; Hong B Neuroimage; 2020 Feb; 207():116363. PubMed ID: 31740339 [TBL] [Abstract][Full Text] [Related]
13. Early development of spatial patterns of power-law frequency scaling in FMRI resting-state and EEG data in the newborn brain. Fransson P; Metsäranta M; Blennow M; Åden U; Lagercrantz H; Vanhatalo S Cereb Cortex; 2013 Mar; 23(3):638-46. PubMed ID: 22402348 [TBL] [Abstract][Full Text] [Related]
15. Regions of interest for resting-state fMRI analysis determined by inter-voxel cross-correlation. Golestani AM; Goodyear BG Neuroimage; 2011 May; 56(1):246-51. PubMed ID: 21338691 [TBL] [Abstract][Full Text] [Related]
16. Role of local network oscillations in resting-state functional connectivity. Cabral J; Hugues E; Sporns O; Deco G Neuroimage; 2011 Jul; 57(1):130-139. PubMed ID: 21511044 [TBL] [Abstract][Full Text] [Related]
17. Topology, Cross-Frequency, and Same-Frequency Band Interactions Shape the Generation of Phase-Amplitude Coupling in a Neural Mass Model of a Cortical Column. Sotero RC PLoS Comput Biol; 2016 Nov; 12(11):e1005180. PubMed ID: 27802274 [TBL] [Abstract][Full Text] [Related]
18. The impact of "physiological correction" on functional connectivity analysis of pharmacological resting state fMRI. Khalili-Mahani N; Chang C; van Osch MJ; Veer IM; van Buchem MA; Dahan A; Beckmann CF; van Gerven JM; Rombouts SA Neuroimage; 2013 Jan; 65():499-510. PubMed ID: 23022093 [TBL] [Abstract][Full Text] [Related]
19. Estimation of resting-state functional connectivity using random subspace based partial correlation: a novel method for reducing global artifacts. Chen T; Ryali S; Qin S; Menon V Neuroimage; 2013 Nov; 82():87-100. PubMed ID: 23747287 [TBL] [Abstract][Full Text] [Related]
20. Frequency and amplitude modulation of resting-state fMRI signals and their functional relevance in normal aging. Yang AC; Tsai SJ; Lin CP; Peng CK; Huang NE Neurobiol Aging; 2018 Oct; 70():59-69. PubMed ID: 30007165 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]