These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 26747758)

  • 21. Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles.
    Dunne M; Corrigan I; Ramtoola Z
    Biomaterials; 2000 Aug; 21(16):1659-68. PubMed ID: 10905407
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of particle size on the in vivo degradation of poly(d,l-lactide-co-glycolide)/α-tricalcium phosphate micro- and nanocomposites.
    Bennett SM; Arumugam M; Wilberforce S; Enea D; Rushton N; Zhang XC; Best SM; Cameron RE; Brooks RA
    Acta Biomater; 2016 Nov; 45():340-348. PubMed ID: 27567963
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vitro degradation study of polyester microspheres by a new HPLC method for monomer release determination.
    Giunchedi P; Conti B; Scalia S; Conte U
    J Control Release; 1998 Dec; 56(1-3):53-62. PubMed ID: 9801429
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro and in vivo evaluation of a polylactic acid-bioactive glass composite for bone fixation devices.
    Vergnol G; Ginsac N; Rivory P; Meille S; Chenal JM; Balvay S; Chevalier J; Hartmann DJ
    J Biomed Mater Res B Appl Biomater; 2016 Jan; 104(1):180-91. PubMed ID: 25677798
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vitro degradation behavior of Mg wire/poly(lactic acid) composite rods prepared by hot pressing and hot drawing.
    Cai H; Meng J; Li X; Xue F; Chu C; Guo C; Bai J
    Acta Biomater; 2019 Oct; 98():125-141. PubMed ID: 31146034
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of phosphate-based glass fibre surface properties on thermally produced poly(lactic acid) matrix composites.
    Mohammadi MS; Ahmed I; Muja N; Rudd CD; Bureau MN; Nazhat SN
    J Mater Sci Mater Med; 2011 Dec; 22(12):2659-72. PubMed ID: 22002512
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication of novel magnesium-matrix composites and their mechanical properties prior to and during in vitro degradation.
    Dezfuli SN; Leeflang S; Huan Z; Chang J; Zhou J
    J Mech Behav Biomed Mater; 2017 Mar; 67():74-86. PubMed ID: 27987428
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Τhe effect of silica nanoparticles on the thermomechanical properties and degradation behavior of polylactic acid.
    Georgiopoulos P; Kontou E; Meristoudi A; Pispas S; Chatzinikolaidou M
    J Biomater Appl; 2014 Nov; 29(5):662-74. PubMed ID: 25091863
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The stability of insulin in biodegradable microparticles based on blends of lactide polymers and polyethylene glycol.
    Yeh MK
    J Microencapsul; 2000; 17(6):743-56. PubMed ID: 11063421
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of biodegradable polymer particles on rat marrow-derived stromal osteoblasts in vitro.
    Wake MC; Gerecht PD; Lu L; Mikos AG
    Biomaterials; 1998 Jul; 19(14):1255-68. PubMed ID: 9720889
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Advanced bredigite-containing magnesium-matrix composites for biodegradable bone implant applications.
    Dezfuli SN; Huan Z; Mol A; Leeflang S; Chang J; Zhou J
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():647-660. PubMed ID: 28629064
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of hydrolysis on mechanical properties of tricalcium phosphate/poly-L: -lactide composites.
    Kobayashi S; Sakamoto K
    J Mater Sci Mater Med; 2009 Jan; 20(1):379-86. PubMed ID: 18807265
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro degradation behavior of a novel bioresorbable composite material based on PLA and a soluble CaP glass.
    Navarro M; Ginebra MP; Planell JA; Barrias CC; Barbosa MA
    Acta Biomater; 2005 Jul; 1(4):411-9. PubMed ID: 16701822
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antibacterial effect of novel biodegradable and bioresorbable PLDA/Mg composites.
    Fernández-Calderón MC; Cifuentes SC; Pacha-Olivenza MA; Gallardo-Moreno AM; Saldaña L; González-Carrasco JL; Blanco MT; Vilaboa N; González-Martín ML; Pérez-Giraldo C
    Biomed Mater; 2017 Feb; 12(1):015025. PubMed ID: 28211364
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface modification of biomaterials based on high-molecular polylactic acid and their effect on inflammatory reactions of primary human monocyte-derived macrophages: perspective for personalized therapy.
    Stankevich KS; Gudima A; Filimonov VD; Klüter H; Mamontova EM; Tverdokhlebov SI; Kzhyshkowska J
    Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():117-26. PubMed ID: 25842115
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation and characterization of homogeneous chitosan-polylactic acid/hydroxyapatite nanocomposite for bone tissue engineering and evaluation of its mechanical properties.
    Cai X; Tong H; Shen X; Chen W; Yan J; Hu J
    Acta Biomater; 2009 Sep; 5(7):2693-703. PubMed ID: 19359225
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biodegradable implant of magnesium/polylactic acid composite with enhanced antibacterial and anti-inflammatory properties.
    Qian Y; Wang X; Wang P; Wu J; Shen Y; Cai K; Bai J; Lu M; Tang C
    J Biomater Appl; 2024 May; ():8853282241257183. PubMed ID: 38816339
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structured Biodegradable Polymeric Microparticles for Drug Delivery Produced Using Flow Focusing Glass Microfluidic Devices.
    Ekanem EE; Nabavi SA; Vladisavljević GT; Gu S
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):23132-43. PubMed ID: 26423218
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties.
    Dziadek M; Menaszek E; Zagrajczuk B; Pawlik J; Cholewa-Kowalska K
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():9-21. PubMed ID: 26249560
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioresorbable magnesium-reinforced PLA membrane for guided bone/tissue regeneration.
    Zhang HY; Jiang HB; Kim JE; Zhang S; Kim KM; Kwon JS
    J Mech Behav Biomed Mater; 2020 Dec; 112():104061. PubMed ID: 32889335
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.