These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
459 related articles for article (PubMed ID: 26747843)
1. Predicting the genetic consequences of future climate change: The power of coupling spatial demography, the coalescent, and historical landscape changes. Brown JL; Weber JJ; Alvarado-Serrano DF; Hickerson MJ; Franks SJ; Carnaval AC Am J Bot; 2016 Jan; 103(1):153-63. PubMed ID: 26747843 [TBL] [Abstract][Full Text] [Related]
2. Tracking climate change in a dispersal-limited species: reduced spatial and genetic connectivity in a montane salamander. Velo-Antón G; Parra JL; Parra-Olea G; Zamudio KR Mol Ecol; 2013 Jun; 22(12):3261-78. PubMed ID: 23710831 [TBL] [Abstract][Full Text] [Related]
3. Alpine species in dynamic insular ecosystems through time: conservation genetics and niche shift estimates of the endemic and vulnerable Viola cheiranthifolia. Rodríguez-Rodríguez P; G Fernández de Castro A; Seguí J; Traveset A; Sosa PA Ann Bot; 2019 Feb; 123(3):505-519. PubMed ID: 30307538 [TBL] [Abstract][Full Text] [Related]
4. Tests of species-specific models reveal the importance of drought in postglacial range shifts of a Mediterranean-climate tree: insights from integrative distributional, demographic and coalescent modelling and ABC model selection. Bemmels JB; Title PO; Ortego J; Knowles LL Mol Ecol; 2016 Oct; 25(19):4889-906. PubMed ID: 27540890 [TBL] [Abstract][Full Text] [Related]
5. Predicting plant diversity patterns in Madagascar: understanding the effects of climate and land cover change in a biodiversity hotspot. Brown KA; Parks KE; Bethell CA; Johnson SE; Mulligan M PLoS One; 2015; 10(4):e0122721. PubMed ID: 25856241 [TBL] [Abstract][Full Text] [Related]
6. Spatially explicit models of dynamic histories: examination of the genetic consequences of Pleistocene glaciation and recent climate change on the American Pika. Brown JL; Knowles LL Mol Ecol; 2012 Aug; 21(15):3757-75. PubMed ID: 22702844 [TBL] [Abstract][Full Text] [Related]
7. Demographic consequences of climate change and land cover help explain a history of extirpations and range contraction in a declining snake species. Pomara LY; LeDee OE; Martin KJ; Zuckerberg B Glob Chang Biol; 2014 Jul; 20(7):2087-99. PubMed ID: 24357530 [TBL] [Abstract][Full Text] [Related]
8. Influences of landscape and pollinators on population genetic structure: examples from three Penstemon (Plantaginaceae) species in the Great Basin. Kramer AT; Fant JB; Ashley MV Am J Bot; 2011 Jan; 98(1):109-21. PubMed ID: 21613089 [TBL] [Abstract][Full Text] [Related]
9. Climate change and biological invasions: evidence, expectations, and response options. Hulme PE Biol Rev Camb Philos Soc; 2017 Aug; 92(3):1297-1313. PubMed ID: 27241717 [TBL] [Abstract][Full Text] [Related]
10. Habitat availability and gene flow influence diverging local population trajectories under scenarios of climate change: a place-based approach. Schwalm D; Epps CW; Rodhouse TJ; Monahan WB; Castillo JA; Ray C; Jeffress MR Glob Chang Biol; 2016 Apr; 22(4):1572-84. PubMed ID: 26667878 [TBL] [Abstract][Full Text] [Related]
11. Exploring the population genetic consequences of the colonization process with spatio-temporally explicit models: insights from coupled ecological, demographic and genetic models in montane grasshoppers. Knowles LL; Alvarado-Serrano DF Mol Ecol; 2010 Sep; 19(17):3727-45. PubMed ID: 20723059 [TBL] [Abstract][Full Text] [Related]
12. Inferring the demographic history of an oligophagous grasshopper: Effects of climatic niche stability and host-plant distribution. Noguerales V; Cordero PJ; Ortego J Mol Phylogenet Evol; 2018 Jan; 118():343-356. PubMed ID: 29080673 [TBL] [Abstract][Full Text] [Related]
13. Mountain landscapes offer few opportunities for high-elevation tree species migration. Bell DM; Bradford JB; Lauenroth WK Glob Chang Biol; 2014 May; 20(5):1441-51. PubMed ID: 24353188 [TBL] [Abstract][Full Text] [Related]
14. Using species distribution modelling to determine opportunities for trophic rewilding under future scenarios of climate change. Jarvie S; Svenning JC Philos Trans R Soc Lond B Biol Sci; 2018 Oct; 373(1761):. PubMed ID: 30348873 [TBL] [Abstract][Full Text] [Related]
15. Incorporating eco-evolutionary information into species distribution models provides comprehensive predictions of species range shifts under climate change. Lu WX; Wang ZZ; Hu XY; Rao GY Sci Total Environ; 2024 Feb; 912():169501. PubMed ID: 38145682 [TBL] [Abstract][Full Text] [Related]
16. Mechanistic models for the spatial spread of species under climate change. Leroux SJ; Larrivée M; Boucher-Lalonde V; Hurford A; Zuloaga J; Kerr JT; Lutscher F Ecol Appl; 2013 Jun; 23(4):815-28. PubMed ID: 23865232 [TBL] [Abstract][Full Text] [Related]
17. Modelling landscape constraints on farmland bird species range shifts under climate change. Reino L; Triviño M; Beja P; Araújo MB; Figueira R; Segurado P Sci Total Environ; 2018 Jun; 625():1596-1605. PubMed ID: 29996456 [TBL] [Abstract][Full Text] [Related]
18. Species-free species distribution models describe macroecological properties of protected area networks. Robinson JL; Fordyce JA PLoS One; 2017; 12(3):e0173443. PubMed ID: 28301488 [TBL] [Abstract][Full Text] [Related]
19. Incorporating spatial autocorrelation into species distribution models alters forecasts of climate-mediated range shifts. Crase B; Liedloff A; Vesk PA; Fukuda Y; Wintle BA Glob Chang Biol; 2014 Aug; 20(8):2566-79. PubMed ID: 24845950 [TBL] [Abstract][Full Text] [Related]
20. Genetic patterns of habitat fragmentation and past climate-change effects in the Mediterranean high-mountain plant Armeria caespitosa (Plumbaginaceae). García-Fernández A; Iriondo JM; Escudero A; Aguilar JF; Feliner GN Am J Bot; 2013 Aug; 100(8):1641-50. PubMed ID: 23857736 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]