These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 26748020)

  • 1. Generalized evaluation of environmental radioactivity measurements with UncertRadio. Part I: Methods without linear unfolding.
    Kanisch G
    Appl Radiat Isot; 2016 Apr; 110():28-41. PubMed ID: 26748020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generalized evaluation of environmental radioactivity measurements with UncertRadio Part II: Methods with linear unfolding.
    Kanisch G
    Appl Radiat Isot; 2016 Apr; 110():74-86. PubMed ID: 26773816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo determination of the characteristic limits in measurement of ionising radiation--fundamentals and numerics.
    Weise K; Kanisch G; Michel R; Schläger M; Schrammel D; Täschner M
    Radiat Prot Dosimetry; 2009 Jul; 135(3):169-96. PubMed ID: 19592600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of ISO-GUM and Monte Carlo methods for the evaluation of measurement uncertainty: application to direct cadmium measurement in water by GFAAS.
    Theodorou D; Meligotsidou L; Karavoltsos S; Burnetas A; Dassenakis M; Scoullos M
    Talanta; 2011 Feb; 83(5):1568-74. PubMed ID: 21238753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of a Monte Carlo method for uncertainty calculation, with an application to the measurement of neutron ambient dose equivalent rate.
    Cox M; Harris P; Nam G; Thomas D
    Radiat Prot Dosimetry; 2006; 121(1):12-23. PubMed ID: 16877469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Propagation of uncertainty in nasal spray in vitro performance models using Monte Carlo simulation: Part II. Error propagation during product performance modeling.
    Guo C; Doub WH; Kauffman JF
    J Pharm Sci; 2010 Aug; 99(8):3572-8. PubMed ID: 20564385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uncertainty evaluation in gamma spectrometric measurements: Uncertainty propagation versus Monte Carlo simulation.
    Ramebäck H; Lindgren P
    Appl Radiat Isot; 2018 Dec; 142():71-76. PubMed ID: 30273761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GENII-LIN-2.1: an open source software system for calculating radiation dose and risk from radionuclides released to the environment.
    Teodori F; Sumini M
    J Radiol Prot; 2008 Dec; 28(4):589-601. PubMed ID: 19029591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GEANT4 calibration of gamma spectrometry efficiency for measurements of airborne radioactivity on filter paper.
    Alrefae T
    Health Phys; 2014 Nov; 107(5):435-41. PubMed ID: 25271933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-situ gamma-ray spectrometry with Ge detectors.
    Gold R
    Health Phys; 1998 Aug; 75(2):208-10. PubMed ID: 9685080
    [No Abstract]   [Full Text] [Related]  

  • 11. Monte Carlo calculation of entire in situ gamma-ray spectra.
    Likar A; Vidmar T; Lipoglavsek M; Omahen G
    J Environ Radioact; 2004; 72(1-2):163-8. PubMed ID: 15162868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple methodology for characterization of germanium coaxial detectors by using Monte Carlo simulation and evolutionary algorithms.
    Guerra JG; Rubiano JG; Winter G; Guerra AG; Alonso H; Arnedo MA; Tejera A; Gil JM; Rodríguez R; Martel P; Bolivar JP
    J Environ Radioact; 2015 Nov; 149():8-18. PubMed ID: 26188622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring, Estimating, and Deciding under Uncertainty.
    Michel R
    Appl Radiat Isot; 2016 Mar; 109():6-11. PubMed ID: 26688360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radioactivity measurements in the aquatic environment using in-situ and laboratory gamma-ray spectrometry.
    Eleftheriou G; Tsabaris C; Androulakaki EG; Patiris DL; Kokkoris M; Kalfas CA; Vlastou R
    Appl Radiat Isot; 2013 Dec; 82():268-78. PubMed ID: 24103707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of scaling factors for the activated concrete of the KRR-2.
    Hong SB; Kang MJ; Lee KW; Chung US
    Appl Radiat Isot; 2009; 67(7-8):1530-3. PubMed ID: 19303787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Comparison of the environmental radioactivity in soils and sediments from Los Roques Archipelago with values of the Margarita Island and the Venezuelan continental coast].
    Labrecque JJ; Laine J
    Acta Cient Venez; 1995; 46(2):140-1. PubMed ID: 9279030
    [No Abstract]   [Full Text] [Related]  

  • 17. The examination of source distribution in a large sample by Monte Carlo simulation.
    Gurau D; Sima O
    Appl Radiat Isot; 2012 Sep; 70(9):2141-3. PubMed ID: 22417694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-group approximation, scattering and calibration coefficients, uncertainty estimates and detection limits of a NaI(Tl)-based gamma spectrometry set-up for low-level activity analysis.
    Owono AP
    J Environ Radioact; 2010 Sep; 101(9):692-9. PubMed ID: 20471729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The EPRI EDE calculator--a software package for assessing effective dose equivalent from hot particles on the skin.
    Xu XG; Su H; Bushart S
    Health Phys; 2006 Oct; 91(4):373-8. PubMed ID: 16966881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the probability distribution of radioactivity estimated by inverse problem solution using Monte Carlo Method.
    Sakai H; Yoshii T; Yunoki A
    Appl Radiat Isot; 2022 Sep; 187():110338. PubMed ID: 35752112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.