BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

545 related articles for article (PubMed ID: 26748089)

  • 21. Fate-restricted neural progenitors in the mammalian cerebral cortex.
    Franco SJ; Gil-Sanz C; Martinez-Garay I; Espinosa A; Harkins-Perry SR; Ramos C; Müller U
    Science; 2012 Aug; 337(6095):746-9. PubMed ID: 22879516
    [TBL] [Abstract][Full Text] [Related]  

  • 22. OTX1 regulates cell cycle progression of neural progenitors in the developing cerebral cortex.
    Huang B; Li X; Tu X; Zhao W; Zhu D; Feng Y; Si X; Chen JG
    J Biol Chem; 2018 Feb; 293(6):2137-2148. PubMed ID: 29273633
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Homeostatic neurogenesis in the adult hippocampus does not involve amplification of Ascl1(high) intermediate progenitors.
    Lugert S; Vogt M; Tchorz JS; Müller M; Giachino C; Taylor V
    Nat Commun; 2012 Feb; 3():670. PubMed ID: 22334073
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiplex genetic fate mapping reveals a novel route of neocortical neurogenesis, which is altered in the Ts65Dn mouse model of Down syndrome.
    Tyler WA; Haydar TF
    J Neurosci; 2013 Mar; 33(12):5106-19. PubMed ID: 23516277
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Caspr Controls the Temporal Specification of Neural Progenitor Cells through Notch Signaling in the Developing Mouse Cerebral Cortex.
    Wu ZQ; Li D; Huang Y; Chen XP; Huang W; Liu CF; Zhao HQ; Xu RX; Cheng M; Schachner M; Ma QH
    Cereb Cortex; 2017 Feb; 27(2):1369-1385. PubMed ID: 26740489
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Notch signaling patterns neurogenic ectoderm and regulates the asymmetric division of neural progenitors in sea urchin embryos.
    Mellott DO; Thisdelle J; Burke RD
    Development; 2017 Oct; 144(19):3602-3611. PubMed ID: 28851710
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced Abventricular Proliferation Compensates Cell Death in the Embryonic Cerebral Cortex.
    Freret-Hodara B; Cui Y; Griveau A; Vigier L; Arai Y; Touboul J; Pierani A
    Cereb Cortex; 2017 Oct; 27(10):4701-4718. PubMed ID: 27620979
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genome Stability by DNA Polymerase β in Neural Progenitors Contributes to Neuronal Differentiation in Cortical Development.
    Onishi K; Uyeda A; Shida M; Hirayama T; Yagi T; Yamamoto N; Sugo N
    J Neurosci; 2017 Aug; 37(35):8444-8458. PubMed ID: 28765330
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single-Cell RNA-Seq Analysis of Retinal Development Identifies NFI Factors as Regulating Mitotic Exit and Late-Born Cell Specification.
    Clark BS; Stein-O'Brien GL; Shiau F; Cannon GH; Davis-Marcisak E; Sherman T; Santiago CP; Hoang TV; Rajaii F; James-Esposito RE; Gronostajski RM; Fertig EJ; Goff LA; Blackshaw S
    Neuron; 2019 Jun; 102(6):1111-1126.e5. PubMed ID: 31128945
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Amplification of progenitors in the mammalian telencephalon includes a new radial glial cell type.
    Pilz GA; Shitamukai A; Reillo I; Pacary E; Schwausch J; Stahl R; Ninkovic J; Snippert HJ; Clevers H; Godinho L; Guillemot F; Borrell V; Matsuzaki F; Götz M
    Nat Commun; 2013; 4():2125. PubMed ID: 23839311
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Live imaging at the onset of cortical neurogenesis reveals differential appearance of the neuronal phenotype in apical versus basal progenitor progeny.
    Attardo A; Calegari F; Haubensak W; Wilsch-Bräuninger M; Huttner WB
    PLoS One; 2008 Jun; 3(6):e2388. PubMed ID: 18545663
    [TBL] [Abstract][Full Text] [Related]  

  • 32. c-Myc controls the fate of neural progenitor cells during cerebral cortex development.
    Wang XL; Ma YX; Xu RJ; Ma JJ; Zhang HC; Qi SB; Xu JH; Qin XZ; Zhang HN; Liu CM; Chen JQ; Li B; Yang HL; Saijilafu
    J Cell Physiol; 2020 Apr; 235(4):4011-4021. PubMed ID: 31625158
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcriptional coupling of neuronal fate commitment and the onset of migration.
    Itoh Y; Tyssowski K; Gotoh Y
    Curr Opin Neurobiol; 2013 Dec; 23(6):957-64. PubMed ID: 23973158
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Clonal analysis reveals laminar fate multipotency and daughter cell apoptosis of mouse cortical intermediate progenitors.
    Mihalas AB; Hevner RF
    Development; 2018 Sep; 145(17):. PubMed ID: 30217810
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Late origin of glia-restricted progenitors in the developing mouse cerebral cortex.
    Costa MR; Bucholz O; Schroeder T; Götz M
    Cereb Cortex; 2009 Jul; 19 Suppl 1():i135-43. PubMed ID: 19363148
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The G protein-coupled receptor GPRC5B contributes to neurogenesis in the developing mouse neocortex.
    Kurabayashi N; Nguyen MD; Sanada K
    Development; 2013 Nov; 140(21):4335-46. PubMed ID: 24089469
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Progenitor genealogy in the developing cerebral cortex.
    Laguesse S; Peyre E; Nguyen L
    Cell Tissue Res; 2015 Jan; 359(1):17-32. PubMed ID: 25141969
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gene-environmental regulation of the postnatal post-mitotic neuronal maturation.
    Prince GS; Reynolds M; Martina V; Sun H
    Trends Genet; 2024 Jun; 40(6):480-494. PubMed ID: 38658255
    [TBL] [Abstract][Full Text] [Related]  

  • 39. miR-137 and miR-122, two outer subventricular zone non-coding RNAs, regulate basal progenitor expansion and neuronal differentiation.
    Tomasello U; Klingler E; Niquille M; Mule N; Santinha AJ; de Vevey L; Prados J; Platt RJ; Borrell V; Jabaudon D; Dayer A
    Cell Rep; 2022 Feb; 38(7):110381. PubMed ID: 35172154
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sequential specification of neurons and glia by developmentally regulated extracellular factors.
    Morrow T; Song MR; Ghosh A
    Development; 2001 Sep; 128(18):3585-94. PubMed ID: 11566862
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.