These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
73 related articles for article (PubMed ID: 26748242)
1. Biophysical changes of ATP binding pocket may explain loss of kinase activity in mutant DAPK3 in cancer: A molecular dynamic simulation analysis. Agarwal T; Annamalai N; Maiti TK; Arsad H Gene; 2016 Apr; 580(1):17-25. PubMed ID: 26748242 [TBL] [Abstract][Full Text] [Related]
2. Impairment of cytokinesis by cancer-associated DAPK3 mutations. Ono T; Terada F; Okumura M; Chihara T; Hamao K Biochem Biophys Res Commun; 2020 Dec; 533(4):1095-1101. PubMed ID: 33032825 [TBL] [Abstract][Full Text] [Related]
3. Cancer-associated loss-of-function mutations implicate DAPK3 as a tumor-suppressing kinase. Brognard J; Zhang YW; Puto LA; Hunter T Cancer Res; 2011 Apr; 71(8):3152-61. PubMed ID: 21487036 [TBL] [Abstract][Full Text] [Related]
4. DAPK3 inhibits gastric cancer progression via activation of ULK1-dependent autophagy. Li GM; Li L; Li MQ; Chen X; Su Q; Deng ZJ; Liu HB; Li B; Zhang WH; Jia YX; Wang WJ; Ma JY; Zhang HL; Xie D; Zhu XF; He YL; Guan XY; Bi J Cell Death Differ; 2021 Mar; 28(3):952-967. PubMed ID: 33037394 [TBL] [Abstract][Full Text] [Related]
5. Activation of AKT negatively regulates the pro-apoptotic function of death-associated protein kinase 3 (DAPK3) in prostate cancer. Das TP; Suman S; Papu John AM; Pal D; Edwards A; Alatassi H; Ankem MK; Damodaran C Cancer Lett; 2016 Jul; 377(2):134-9. PubMed ID: 27126362 [TBL] [Abstract][Full Text] [Related]
6. Death-associated protein kinase 3 mediates vascular structural remodelling via stimulating smooth muscle cell proliferation and migration. Usui T; Sakatsume T; Nijima R; Otani K; Kazama K; Morita T; Kameshima S; Okada M; Yamawaki H Clin Sci (Lond); 2014 Oct; 127(8):539-48. PubMed ID: 24814693 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of DAPK3 Suppresses Radiation-Induced Cellular Senescence by Activation of a PGC1α-Dependent Metabolism Pathway in Brain Endothelial Cells. Park JE; Park JW; Sim MK; Kim SR; Kim KS J Gerontol A Biol Sci Med Sci; 2024 May; 79(5):. PubMed ID: 38563090 [TBL] [Abstract][Full Text] [Related]
8. The tumor suppressor kinase DAPK3 drives tumor-intrinsic immunity through the STING-IFN-β pathway. Takahashi M; Lio CJ; Campeau A; Steger M; Ay F; Mann M; Gonzalez DJ; Jain M; Sharma S Nat Immunol; 2021 Apr; 22(4):485-496. PubMed ID: 33767426 [TBL] [Abstract][Full Text] [Related]
9. DAPK3 suppresses acini morphogenesis and is required for mouse development. Kocher BA; White LS; Piwnica-Worms D Mol Cancer Res; 2015 Feb; 13(2):358-67. PubMed ID: 25304685 [TBL] [Abstract][Full Text] [Related]
10. A basic residue, Lys 782, composes part of the ATP-binding site on the epidermal growth factor receptor tyrosine kinase. Klingbeil CK; Gill GN Arch Biochem Biophys; 1999 Mar; 363(1):27-32. PubMed ID: 10049496 [TBL] [Abstract][Full Text] [Related]
11. Silencing DAPK3 blocks the autophagosome-lysosome fusion by mediating SNAP29 in trophoblast cells under high glucose treatment. Wang Y; Ji L; Peng Z; Lai R; Zhang X; Xu Y; Chen Z; Liu R; Zhong Y; Hu H; Wang L Mol Cell Endocrinol; 2020 Feb; 502():110674. PubMed ID: 31811899 [TBL] [Abstract][Full Text] [Related]
12. Validation of chemical genetics for the study of zipper-interacting protein kinase signaling. Al-Ghabkari A; Moffat LD; Walsh MP; MacDonald JA Proteins; 2018 Nov; 86(11):1211-1217. PubMed ID: 30381843 [TBL] [Abstract][Full Text] [Related]
13. Death-Associated Protein Kinase 3 Inhibitors Identified by Virtual Screening for Drug Discovery in Cancer and Hypertension. Xue B; Chaddha M; Elasbali AM; Zhu Z; Jairajpuri DS; Alhumaydhi FA; Mohammad T; Abdulmonem WA; Sharaf SE; Hassan MI OMICS; 2022 Jul; 26(7):404-413. PubMed ID: 35759452 [TBL] [Abstract][Full Text] [Related]
14. Crystal structures of the Mnk2 kinase domain reveal an inhibitory conformation and a zinc binding site. Jauch R; Jäkel S; Netter C; Schreiter K; Aicher B; Jäckle H; Wahl MC Structure; 2005 Oct; 13(10):1559-68. PubMed ID: 16216586 [TBL] [Abstract][Full Text] [Related]
15. Impact of EGFR point mutations on the sensitivity to gefitinib: insights from comparative structural analyses and molecular dynamics simulations. Liu B; Bernard B; Wu JH Proteins; 2006 Nov; 65(2):331-46. PubMed ID: 16927343 [TBL] [Abstract][Full Text] [Related]
16. Cancer-related mutations in BRCA1-BRCT cause long-range structural changes in protein-protein binding sites: a molecular dynamics study. Gough CA; Gojobori T; Imanishi T Proteins; 2007 Jan; 66(1):69-86. PubMed ID: 17063491 [TBL] [Abstract][Full Text] [Related]
17. Relationship between a point mutation S97C in CK1δ protein and its affect on ATP-binding affinity. Kumar A; Rajendran V; Sethumadhavan R; Purohit R J Biomol Struct Dyn; 2014; 32(3):394-405. PubMed ID: 23527964 [TBL] [Abstract][Full Text] [Related]
18. Death-associated protein kinase 2: Regulator of apoptosis, autophagy and inflammation. Geering B Int J Biochem Cell Biol; 2015 Aug; 65():151-4. PubMed ID: 26055515 [TBL] [Abstract][Full Text] [Related]
19. The hydrogen bonds between Arg423 and Glu472 and other key residues, Asp443, Ser477, and Pro489, are responsible for the formation and a different positioning of TNP-ATP and ATP within the nucleotide-binding site of Na(+)/K(+)-ATPase. Lánský Z; Kubala M; Ettrich R; Kutý M; Plásek J; Teisinger J; Schoner W; Amler E Biochemistry; 2004 Jul; 43(26):8303-11. PubMed ID: 15222743 [TBL] [Abstract][Full Text] [Related]
20. DAPK-HSF1 interaction as a positive-feedback mechanism stimulating TNF-induced apoptosis in colorectal cancer cells. Benderska N; Ivanovska J; Rau TT; Schulze-Luehrmann J; Mohan S; Chakilam S; Gandesiri M; Ziesché E; Fischer T; Söder S; Agaimy A; Distel L; Sticht H; Mahadevan V; Schneider-Stock R J Cell Sci; 2014 Dec; 127(Pt 24):5273-87. PubMed ID: 25380824 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]