These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 26748367)

  • 1. Aluminum nanopyramid array with tunable ultraviolet-visible-infrared wavelength plasmon resonances for rapid detection of carbohydrate antigen 199.
    Li W; Qiu Y; Zhang L; Jiang L; Zhou Z; Chen H; Zhou J
    Biosens Bioelectron; 2016 May; 79():500-7. PubMed ID: 26748367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reproducible Plasmonic Nanopyramid Array of Various Metals for Highly Sensitive Refractometric and Surface-Enhanced Raman Biosensing.
    Zhang L; Li X; Wang Y; Sun K; Chen X; Chen H; Zhou J
    ACS Omega; 2018 Oct; 3(10):14181-14187. PubMed ID: 30411061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localized surface plasmon resonances in aluminum nanodisks.
    Langhammer C; Schwind M; Kasemo B; Zorić I
    Nano Lett; 2008 May; 8(5):1461-71. PubMed ID: 18393471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aluminum Nanoholes for Optical Biosensing.
    Barrios CA; Canalejas-Tejero V; Herranz S; Urraca J; Moreno-Bondi MC; Avella-Oliver M; Maquieira Á; Puchades R
    Biosensors (Basel); 2015 Jul; 5(3):417-31. PubMed ID: 26184330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays.
    Maidecchi G; Gonella G; Proietti Zaccaria R; Moroni R; Anghinolfi L; Giglia A; Nannarone S; Mattera L; Dai HL; Canepa M; Bisio F
    ACS Nano; 2013 Jul; 7(7):5834-41. PubMed ID: 23725571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals.
    Buonsanti R; Llordes A; Aloni S; Helms BA; Milliron DJ
    Nano Lett; 2011 Nov; 11(11):4706-10. PubMed ID: 21970407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-Crystalline Aluminum Nanostructures on a Semiconducting GaAs Substrate for Ultraviolet to Near-Infrared Plasmonics.
    Liu HW; Lin FC; Lin SW; Wu JY; Chou BT; Lai KJ; Lin SD; Huang JS
    ACS Nano; 2015 Apr; 9(4):3875-86. PubMed ID: 25848830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic Biosensing with Aluminum Thin Films under the Kretschmann Configuration.
    Lambert AS; Valiulis SN; Malinick AS; Tanabe I; Cheng Q
    Anal Chem; 2020 Jul; 92(13):8654-8659. PubMed ID: 32525300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit.
    Shen Y; Zhou J; Liu T; Tao Y; Jiang R; Liu M; Xiao G; Zhu J; Zhou ZK; Wang X; Jin C; Wang J
    Nat Commun; 2013; 4():2381. PubMed ID: 23979039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultraviolet surface plasmon-coupled emission using thin aluminum films.
    Gryczynski I; Malicka J; Gryczynski Z; Nowaczyk K; Lakowicz JR
    Anal Chem; 2004 Jul; 76(14):4076-81. PubMed ID: 15253645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep UV nano-microstructuring of substrates for surface plasmon resonance imaging.
    Dhawan A; Duval A; Nakkach M; Barbillon G; Moreau J; Canva M; Vo-Dinh T
    Nanotechnology; 2011 Apr; 22(16):165301. PubMed ID: 21393822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays.
    Jha SK; Ahmed Z; Agio M; Ekinci Y; Löffler JF
    J Am Chem Soc; 2012 Feb; 134(4):1966-9. PubMed ID: 22239484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly sensitive nano-porous lattice biosensor based on localized surface plasmon resonance and interference.
    Yeom SH; Kim OG; Kang BH; Kim KJ; Yuan H; Kwon DH; Kim HR; Kang SW
    Opt Express; 2011 Nov; 19(23):22882-91. PubMed ID: 22109166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colorimetric sensors using nano-patch surface plasmon resonators.
    Khorasaninejad M; Mohsen Raeis-Zadeh S; Amarloo H; Abedzadeh N; Safavi-Naeini S; Saini SS
    Nanotechnology; 2013 Sep; 24(35):355501. PubMed ID: 23917424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trends and challenges of refractometric nanoplasmonic biosensors: a review.
    Estevez MC; Otte MA; Sepulveda B; Lechuga LM
    Anal Chim Acta; 2014 Jan; 806():55-73. PubMed ID: 24331040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aluminum for plasmonics.
    Knight MW; King NS; Liu L; Everitt HO; Nordlander P; Halas NJ
    ACS Nano; 2014 Jan; 8(1):834-40. PubMed ID: 24274662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lithography-Free Fabrication of Silica Nanocylinders with Suspended Gold Nanorings for LSPR-Based Sensing.
    Thilsted AH; Pan JY; Wu K; Zór K; Rindzevicius T; Schmidt MS; Boisen A
    Small; 2016 Dec; 12(48):6745-6752. PubMed ID: 27709773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual Kretschmann and Otto configuration fiber surface plasmon resonance biosensor.
    Li L; Liang Y; Guang J; Cui W; Zhang X; Masson JF; Peng W
    Opt Express; 2017 Oct; 25(22):26950-26957. PubMed ID: 29092176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.