BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

703 related articles for article (PubMed ID: 26748808)

  • 1. Archetypal tryptophan-rich antimicrobial peptides: properties and applications.
    Shagaghi N; Palombo EA; Clayton AH; Bhave M
    World J Microbiol Biotechnol; 2016 Feb; 32(2):31. PubMed ID: 26748808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action.
    Chan DI; Prenner EJ; Vogel HJ
    Biochim Biophys Acta; 2006 Sep; 1758(9):1184-202. PubMed ID: 16756942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tryptophan-Rich and Proline-Rich Antimicrobial Peptides.
    Mishra AK; Choi J; Moon E; Baek KH
    Molecules; 2018 Apr; 23(4):. PubMed ID: 29614844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recombinant expression, antimicrobial activity and mechanism of action of tritrpticin analogs containing fluoro-tryptophan residues.
    Arias M; Hoffarth ER; Ishida H; Aramini JM; Vogel HJ
    Biochim Biophys Acta; 2016 May; 1858(5):1012-23. PubMed ID: 26724205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of perfectly symmetric Trp-rich peptides with potent and broad-spectrum antimicrobial activities.
    Yang ST; Shin SY; Hahm KS; Kim JI
    Int J Antimicrob Agents; 2006 Apr; 27(4):325-30. PubMed ID: 16563706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational design of tryptophan-rich antimicrobial peptides with enhanced antimicrobial activities and specificities.
    Yu HY; Huang KC; Yip BS; Tu CH; Chen HL; Cheng HT; Cheng JW
    Chembiochem; 2010 Nov; 11(16):2273-82. PubMed ID: 20865718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell specificity, anti-inflammatory activity, and plausible bactericidal mechanism of designed Trp-rich model antimicrobial peptides.
    Park KH; Nan YH; Park Y; Kim JI; Park IS; Hahm KS; Shin SY
    Biochim Biophys Acta; 2009 May; 1788(5):1193-203. PubMed ID: 19285481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tryptophan-rich antimicrobial peptides: comparative properties and membrane interactions.
    Schibli DJ; Epand RF; Vogel HJ; Epand RM
    Biochem Cell Biol; 2002; 80(5):667-77. PubMed ID: 12440706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antimicrobial Peptides: A Promising Therapeutic Strategy in Tackling Antimicrobial Resistance.
    Nuti R; Goud NS; Saraswati AP; Alvala R; Alvala M
    Curr Med Chem; 2017; 24(38):4303-4314. PubMed ID: 28814242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the Activity of Trp-Rich Antimicrobial Peptides by Arg/Lys Substitutions and Changing the Length of Cationic Residues.
    Arias M; Piga KB; Hyndman ME; Vogel HJ
    Biomolecules; 2018 Apr; 8(2):. PubMed ID: 29671805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of short membrane selective antimicrobial peptides containing tryptophan and arginine residues for improved activity, salt-resistance, and biocompatibility.
    Saravanan R; Li X; Lim K; Mohanram H; Peng L; Mishra B; Basu A; Lee JM; Bhattacharjya S; Leong SS
    Biotechnol Bioeng; 2014 Jan; 111(1):37-49. PubMed ID: 23860860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current state of a dual behaviour of antimicrobial peptides-Therapeutic agents and promising delivery vectors.
    Piotrowska U; Sobczak M; Oledzka E
    Chem Biol Drug Des; 2017 Dec; 90(6):1079-1093. PubMed ID: 28548370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and membrane-disruption mechanism of charge-enriched AMPs exhibiting cell selectivity, high-salt resistance, and anti-biofilm properties.
    Han HM; Gopal R; Park Y
    Amino Acids; 2016 Feb; 48(2):505-22. PubMed ID: 26450121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tryptophan- and arginine-rich antimicrobial peptides: Anti-infectives with great potential.
    Straus SK
    Biochim Biophys Acta Biomembr; 2024 Mar; 1866(3):184260. PubMed ID: 38113954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic turn conformation of a short tryptophan-rich cationic antimicrobial peptide and its interaction with phospholipid membranes.
    Nichols M; Kuljanin M; Nategholeslam M; Hoang T; Vafaei S; Tomberli B; Gray CG; DeBruin L; Jelokhani-Niaraki M
    J Phys Chem B; 2013 Nov; 117(47):14697-708. PubMed ID: 24195729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxy-tryptophan containing derivatives of tritrpticin: modification of antimicrobial activity and membrane interactions.
    Arias M; Jensen KV; Nguyen LT; Storey DG; Vogel HJ
    Biochim Biophys Acta; 2015 Jan; 1848(1 Pt B):277-88. PubMed ID: 25178967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lactoferrin derived peptides: mechanisms of action and their perspectives as antimicrobial and antitumoral agents.
    Lizzi AR; Carnicelli V; Clarkson MM; Di Giulio A; Oratore A
    Mini Rev Med Chem; 2009 Jun; 9(6):687-95. PubMed ID: 19519494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of tryptophan and hydrophobicity on the structure and bioactivity of novel indolicidin derivatives with promising pharmaceutical potential.
    Podorieszach AP; Huttunen-Hennelly HE
    Org Biomol Chem; 2010 Apr; 8(7):1679-87. PubMed ID: 20237682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anti-infective efficacy of the lactoferrin-derived antimicrobial peptide HLR1r.
    Björn C; Mahlapuu M; Mattsby-Baltzer I; Håkansson J
    Peptides; 2016 Jul; 81():21-8. PubMed ID: 27155369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anti-biofilm and sporicidal activity of peptides based on wheat puroindoline and barley hordoindoline proteins.
    Shagaghi N; Alfred RL; Clayton AH; Palombo EA; Bhave M
    J Pept Sci; 2016 Jul; 22(7):492-500. PubMed ID: 27238815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.