BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1076 related articles for article (PubMed ID: 26748913)

  • 1. Physiological and molecular analysis on root growth associated with the tolerance to aluminum and drought individual and combined in Tibetan wild and cultivated barley.
    Ahmed IM; Nadira UA; Cao F; He X; Zhang G; Wu F
    Planta; 2016 Apr; 243(4):973-85. PubMed ID: 26748913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tolerance to Drought, Low pH and Al Combined Stress in Tibetan Wild Barley Is Associated with Improvement of ATPase and Modulation of Antioxidant Defense System.
    Ahmed IM; Nadira UA; Qiu CW; Cao F; Zhang G; Holford P; Wu F
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30423885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological and molecular analysis of the interaction between aluminium toxicity and drought stress in common bean (Phaseolus vulgaris).
    Yang ZB; Eticha D; Albacete A; Rao IM; Roitsch T; Horst WJ
    J Exp Bot; 2012 May; 63(8):3109-25. PubMed ID: 22371077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HvEXPB7, a novel β-expansin gene revealed by the root hair transcriptome of Tibetan wild barley, improves root hair growth under drought stress.
    He X; Zeng J; Cao F; Ahmed IM; Zhang G; Vincze E; Wu F
    J Exp Bot; 2015 Dec; 66(22):7405-19. PubMed ID: 26417018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of microRNAs in response to aluminum stress in the roots of Tibetan wild barley and cultivated barley.
    Wu L; Yu J; Shen Q; Huang L; Wu D; Zhang G
    BMC Genomics; 2018 Jul; 19(1):560. PubMed ID: 30064381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-Wide Identification and Characterization of Drought Stress Responsive microRNAs in Tibetan Wild Barley.
    Qiu CW; Liu L; Feng X; Hao PF; He X; Cao F; Wu F
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32316632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic Insights into Potassium-Conferred Drought Stress Tolerance in Cultivated and Tibetan Wild Barley: Differential Osmoregulation, Nutrient Retention, Secondary Metabolism and Antioxidative Defense Capacity.
    Sehar S; Adil MF; Zeeshan M; Holford P; Cao F; Wu F; Wang Y
    Int J Mol Sci; 2021 Dec; 22(23):. PubMed ID: 34884904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential changes in grain ultrastructure, amylase, protein and amino acid profiles between Tibetan wild and cultivated barleys under drought and salinity alone and combined stress.
    Ahmed IM; Cao F; Han Y; Nadira UA; Zhang G; Wu F
    Food Chem; 2013 Dec; 141(3):2743-50. PubMed ID: 23871019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in physiological features associated with aluminum tolerance in Tibetan wild and cultivated barleys.
    Dai H; Zhao J; Ahmed IM; Cao F; Chen ZH; Zhang G; Li C; Wu F
    Plant Physiol Biochem; 2014 Feb; 75():36-44. PubMed ID: 24361508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative proteomic analysis of drought tolerance in the two contrasting Tibetan wild genotypes and cultivated genotype.
    Wang N; Zhao J; He X; Sun H; Zhang G; Wu F
    BMC Genomics; 2015 Jun; 16(1):432. PubMed ID: 26044796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Barley
    Ahmed IM; Nadira UA; Qiu CW; Cao F; Chen ZH; Vincze E; Wu F
    Cells; 2020 Jun; 9(6):. PubMed ID: 32585935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abscisic acid flux alterations result in differential abscisic acid signaling responses and impact assimilation efficiency in barley under terminal drought stress.
    Seiler C; Harshavardhan VT; Reddy PS; Hensel G; Kumlehn J; Eschen-Lippold L; Rajesh K; Korzun V; Wobus U; Lee J; Selvaraj G; Sreenivasulu N
    Plant Physiol; 2014 Apr; 164(4):1677-96. PubMed ID: 24610749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dehydration induced transcriptomic responses in two Tibetan hulless barley (Hordeum vulgare var. nudum) accessions distinguished by drought tolerance.
    Liang J; Chen X; Deng G; Pan Z; Zhang H; Li Q; Yang K; Long H; Yu M
    BMC Genomics; 2017 Oct; 18(1):775. PubMed ID: 29020945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of HvAKT1 improves drought tolerance in barley by regulating root ion homeostasis and ROS and NO signaling.
    Feng X; Liu W; Cao F; Wang Y; Zhang G; Chen ZH; Wu F
    J Exp Bot; 2020 Oct; 71(20):6587-6600. PubMed ID: 32766860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whole transcriptome analysis of transgenic barley with altered cytokinin homeostasis and increased tolerance to drought stress.
    Vojta P; Kokáš F; Husičková A; Grúz J; Bergougnoux V; Marchetti CF; Jiskrová E; Ježilová E; Mik V; Ikeda Y; Galuszka P
    N Biotechnol; 2016 Sep; 33(5 Pt B):676-691. PubMed ID: 26877151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley.
    Ahmed IM; Dai H; Zheng W; Cao F; Zhang G; Sun D; Wu F
    Plant Physiol Biochem; 2013 Feb; 63():49-60. PubMed ID: 23232247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conditioning of Roots with Hypoxia Increases Aluminum and Acid Stress Tolerance by Mitigating Activation of K+ Efflux Channels by ROS in Barley: Insights into Cross-Tolerance Mechanisms.
    Ma Y; Zhu M; Shabala L; Zhou M; Shabala S
    Plant Cell Physiol; 2016 Jan; 57(1):160-73. PubMed ID: 26581863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide association analysis of aluminum tolerance in cultivated and Tibetan wild barley.
    Cai S; Wu D; Jabeen Z; Huang Y; Huang Y; Zhang G
    PLoS One; 2013; 8(7):e69776. PubMed ID: 23922796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative proteomic analysis of aluminum tolerance in tibetan wild and cultivated barleys.
    Dai H; Cao F; Chen X; Zhang M; Ahmed IM; Chen ZH; Li C; Zhang G; Wu F
    PLoS One; 2013; 8(5):e63428. PubMed ID: 23691047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HvHOX9, a novel homeobox leucine zipper transcription factor, positively regulates aluminum tolerance in Tibetan wild barley.
    Feng X; Liu W; Dai H; Qiu Y; Zhang G; Chen ZH; Wu F
    J Exp Bot; 2020 Oct; 71(19):6057-6073. PubMed ID: 32588054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 54.