These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 26749323)
21. Pectin-bioactive glass self-gelling, injectable composites with high antibacterial activity. Douglas TEL; Dziadek M; Schietse J; Boone M; Declercq HA; Coenye T; Vanhoorne V; Vervaet C; Balcaen L; Buchweitz M; Vanhaecke F; Van Assche F; Cholewa-Kowalska K; Skirtach AG Carbohydr Polym; 2019 Feb; 205():427-436. PubMed ID: 30446125 [TBL] [Abstract][Full Text] [Related]
22. Enzymatic, urease-mediated mineralization of gellan gum hydrogel with calcium carbonate, magnesium-enriched calcium carbonate and magnesium carbonate for bone regeneration applications. Douglas TEL; Łapa A; Samal SK; Declercq HA; Schaubroeck D; Mendes AC; der Voort PV; Dokupil A; Plis A; De Schamphelaere K; Chronakis IS; Pamuła E; Skirtach AG J Tissue Eng Regen Med; 2017 Dec; 11(12):3556-3566. PubMed ID: 28569438 [TBL] [Abstract][Full Text] [Related]
23. Asymmetric PDLLA membranes containing Bioglass® for guided tissue regeneration: characterization and in vitro biological behavior. Leal AI; Caridade SG; Ma J; Yu N; Gomes ME; Reis RL; Jansen JA; Walboomers XF; Mano JF Dent Mater; 2013 Apr; 29(4):427-36. PubMed ID: 23422419 [TBL] [Abstract][Full Text] [Related]
24. Mechanical & cell culture properties of elastin-like polypeptide, collagen, bioglass, and carbon nanosphere composites. Wheeler TS; Sbravati ND; Janorkar AV Ann Biomed Eng; 2013 Oct; 41(10):2042-55. PubMed ID: 23677640 [TBL] [Abstract][Full Text] [Related]
25. In vitro evaluation of novel bioactive composites based on Bioglass-filled polylactide foams for bone tissue engineering scaffolds. Blaker JJ; Gough JE; Maquet V; Notingher I; Boccaccini AR J Biomed Mater Res A; 2003 Dec; 67(4):1401-11. PubMed ID: 14624528 [TBL] [Abstract][Full Text] [Related]
26. Self-Healing Elastin-Bioglass Hydrogels. Zeng Q; Desai MS; Jin HE; Lee JH; Chang J; Lee SW Biomacromolecules; 2016 Aug; 17(8):2619-25. PubMed ID: 27380227 [TBL] [Abstract][Full Text] [Related]
27. Viscoelastic behaviour of hydrogel-based composites for tissue engineering under mechanical load. Kocen R; Gasik M; Gantar A; Novak S Biomed Mater; 2017 Mar; 12(2):025004. PubMed ID: 28106535 [TBL] [Abstract][Full Text] [Related]
29. Enzymatic mineralization of gellan gum hydrogel for bone tissue-engineering applications and its enhancement by polydopamine. Douglas TE; Wlodarczyk M; Pamula E; Declercq HA; de Mulder EL; Bucko MM; Balcaen L; Vanhaecke F; Cornelissen R; Dubruel P; Jansen JA; Leeuwenburgh SC J Tissue Eng Regen Med; 2014 Nov; 8(11):906-18. PubMed ID: 23038649 [TBL] [Abstract][Full Text] [Related]
30. Comparison of hydrogels in the in vivo formation of tissue-engineered bone using mesenchymal stem cells and beta-tricalcium phosphate. Weinand C; Gupta R; Huang AY; Weinberg E; Madisch I; Qudsi RA; Neville CM; Pomerantseva I; Vacanti JP Tissue Eng; 2007 Apr; 13(4):757-65. PubMed ID: 17223744 [TBL] [Abstract][Full Text] [Related]
31. The calcium silicate/alginate composite: preparation and evaluation of its behavior as bioactive injectable hydrogels. Han Y; Zeng Q; Li H; Chang J Acta Biomater; 2013 Nov; 9(11):9107-17. PubMed ID: 23796407 [TBL] [Abstract][Full Text] [Related]
32. Performance of new gellan gum hydrogels combined with human articular chondrocytes for cartilage regeneration when subcutaneously implanted in nude mice. Oliveira JT; Santos TC; Martins L; Silva MA; Marques AP; Castro AG; Neves NM; Reis RL J Tissue Eng Regen Med; 2009 Oct; 3(7):493-500. PubMed ID: 19598145 [TBL] [Abstract][Full Text] [Related]
33. Bioactive hydrogel-nanosilica hybrid materials: a potential injectable scaffold for bone tissue engineering. Lewandowska-Łańcucka J; Fiejdasz S; Rodzik Ł; Kozieł M; Nowakowska M Biomed Mater; 2015 Feb; 10(1):015020. PubMed ID: 25668107 [TBL] [Abstract][Full Text] [Related]
34. Biological evaluation of intervertebral disc cells in different formulations of gellan gum-based hydrogels. Khang G; Lee SK; Kim HN; Silva-Correia J; Gomes ME; Viegas CA; Dias IR; Oliveira JM; Reis RL J Tissue Eng Regen Med; 2015 Mar; 9(3):265-75. PubMed ID: 23225767 [TBL] [Abstract][Full Text] [Related]
35. A bio-inspired, microchanneled hydrogel with controlled spacing of cell adhesion ligands regulates 3D spatial organization of cells and tissue. Lee MK; Rich MH; Lee J; Kong H Biomaterials; 2015 Jul; 58():26-34. PubMed ID: 25941779 [TBL] [Abstract][Full Text] [Related]
36. PDLLA/Bioglass composites for soft-tissue and hard-tissue engineering: an in vitro cell biology assessment. Verrier S; Blaker JJ; Maquet V; Hench LL; Boccaccini AR Biomaterials; 2004 Jul; 25(15):3013-21. PubMed ID: 14967534 [TBL] [Abstract][Full Text] [Related]
37. Enhancing the biological activity of chitosan and controlling the degradation by nanoscale interaction with bioglass. Ravarian R; Craft M; Dehghani F J Biomed Mater Res A; 2015 Sep; 103(9):2898-908. PubMed ID: 25690303 [TBL] [Abstract][Full Text] [Related]
38. Self-mineralizing Ca-enriched methacrylated gellan gum beads for bone tissue engineering. Vieira S; da Silva Morais A; Garet E; Silva-Correia J; Reis RL; González-Fernández Á; Miguel Oliveira J Acta Biomater; 2019 Jul; 93():74-85. PubMed ID: 30708066 [TBL] [Abstract][Full Text] [Related]
39. Gellan gum-based hydrogels for intervertebral disc tissue-engineering applications. Silva-Correia J; Oliveira JM; Caridade SG; Oliveira JT; Sousa RA; Mano JF; Reis RL J Tissue Eng Regen Med; 2011 Jun; 5(6):e97-107. PubMed ID: 21604382 [TBL] [Abstract][Full Text] [Related]
40. Osteogenic differentiation of umbilical cord and adipose derived stem cells onto highly porous 45S5 Bioglass®-based scaffolds. Detsch R; Alles S; Hum J; Westenberger P; Sieker F; Heusinger D; Kasper C; Boccaccini AR J Biomed Mater Res A; 2015 Mar; 103(3):1029-37. PubMed ID: 24853477 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]