These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

438 related articles for article (PubMed ID: 26749358)

  • 1. 3D printing-assisted fabrication of double-layered optical tissue phantoms for laser tattoo treatments.
    Kim H; Hau NT; Chae YG; Lee BI; Kang HW
    Lasers Surg Med; 2016 Apr; 48(4):392-9. PubMed ID: 26749358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multilayered tissue mimicking skin and vessel phantoms with tunable mechanical, optical, and acoustic properties.
    Chen AI; Balter ML; Chen MI; Gross D; Alam SK; Maguire TJ; Yarmush ML
    Med Phys; 2016 Jun; 43(6):3117-3131. PubMed ID: 27277058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurements of fundamental properties of homogeneous tissue phantoms.
    Wróbel MS; Popov AP; Bykov AV; Kinnunen M; Jędrzejewska-Szczerska M; Tuchin VV
    J Biomed Opt; 2015 Apr; 20(4):045004. PubMed ID: 25891198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental and numerical study of the colour appearance of tattoo models.
    Shimada M; Hata J; Yamada Y; Itoh M; Uchida A; Yatagai T
    Med Biol Eng Comput; 2002 Mar; 40(2):218-24. PubMed ID: 12043804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of thin poly(dimethylsiloxane)-based tissue-simulating phantoms with tunable reduced scattering and absorption coefficients at visible and near-infrared wavelengths.
    Greening GJ; Istfan R; Higgins LM; Balachandran K; Roblyer D; Pierce MC; Muldoon TJ
    J Biomed Opt; 2014; 19(11):115002. PubMed ID: 25387084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Fabrication of Kidney Phantoms for Internal Radiation Dosimetry Using 3D Printing Technology.
    Tran-Gia J; Schlögl S; Lassmann M
    J Nucl Med; 2016 Dec; 57(12):1998-2005. PubMed ID: 27445291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accuracy of retrieving optical properties from liquid tissue phantoms using a single integrating sphere.
    Vincely VD; Vishwanath K
    Appl Opt; 2022 Jan; 61(2):375-385. PubMed ID: 35200872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multimodal 3D Printing of Phantoms to Simulate Biological Tissue.
    Ma C; Shen S; Liu G; Guo S; Guo B; Li J; Huang K; Zheng Y; Shao P; Dong E; Chu J; Xu RX
    J Vis Exp; 2020 Jan; (155):. PubMed ID: 31984957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo stiffness measurement of epidermis, dermis, and hypodermis using broadband Rayleigh-wave optical coherence elastography.
    Feng X; Li GY; Ramier A; Eltony AM; Yun SH
    Acta Biomater; 2022 Jul; 146():295-305. PubMed ID: 35470076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical phantoms of varying geometry based on thin building blocks with controlled optical properties.
    de Bruin DM; Bremmer RH; Kodach VM; de Kinkelder R; van Marle J; van Leeuwen TG; Faber DJ
    J Biomed Opt; 2010; 15(2):025001. PubMed ID: 20459242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue-mimicking bladder wall phantoms for evaluating acoustic radiation force-optical coherence elastography systems.
    Ejofodomi OA; Zderic V; Zara JM
    Med Phys; 2010 Apr; 37(4):1440-8. PubMed ID: 20443465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of novel imaging probe for optical/acoustic radiation imaging (OARI).
    Ejofodomi OA; Zderic V; Zara JM
    Med Phys; 2013 Nov; 40(11):111910. PubMed ID: 24320443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging of intradermal tattoos by optical coherence tomography.
    Morsy H; Mogensen M; Thrane L; Jemec GB
    Skin Res Technol; 2007 Nov; 13(4):444-8. PubMed ID: 17908197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of a pediatric torso phantom with multiple tissues represented using a dual nozzle thermoplastic 3D printer.
    Mille MM; Griffin KT; Maass-Moreno R; Lee C
    J Appl Clin Med Phys; 2020 Nov; 21(11):226-236. PubMed ID: 33073922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of absorption and reduced scattering coefficients in Asian human epidermis, dermis, and subcutaneous fat tissues in the 400- to 1100-nm wavelength range for optical penetration depth and energy deposition analysis.
    Shimojo Y; Nishimura T; Hazama H; Ozawa T; Awazu K
    J Biomed Opt; 2020 Apr; 25(4):1-14. PubMed ID: 32356424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-Dimensional Printing for Construction of Tissue-Equivalent Anthropomorphic Phantoms and Determination of Conceptus Dose.
    Hoerner MR; Maynard MR; Rajon DA; Bova FJ; Hintenlang DE
    AJR Am J Roentgenol; 2018 Dec; 211(6):1283-1290. PubMed ID: 30354270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of a multilayer tissue-mimicking phantom with tunable optical properties to simulate vascular oxygenation and perfusion for optical imaging technology.
    Liu G; Huang K; Jia Q; Liu S; Shen S; Li J; Dong E; Lemaillet P; Allen DW; Xu RX
    Appl Opt; 2018 Aug; 57(23):6772-6780. PubMed ID: 30129625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiwavelength tissue-mimicking phantoms with tunable vessel pulsation.
    Jenne S; Zappe H
    J Biomed Opt; 2023 Apr; 28(4):045003. PubMed ID: 37077500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of realistic physical breast phantoms matched to virtual breast phantoms based on human subject data.
    Kiarashi N; Nolte AC; Sturgeon GM; Segars WP; Ghate SV; Nolte LW; Samei E; Lo JY
    Med Phys; 2015 Jul; 42(7):4116-26. PubMed ID: 26133612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polydimethylsiloxane tissue-mimicking phantoms with tunable optical properties.
    Goldfain AM; Lemaillet P; Allen DW; Briggman KA; Hwang J
    J Biomed Opt; 2021 Nov; 27(7):. PubMed ID: 34796707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.