These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 26749507)

  • 1. New insights on the mitochondrial proteome plasticity in Parkinson's disease.
    Aroso M; Ferreira R; Freitas A; Vitorino R; Gomez-Lazaro M
    Proteomics Clin Appl; 2016 Apr; 10(4):416-29. PubMed ID: 26749507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling the phosphoproteome dynamics in mammal mitochondria from a network perspective.
    Padrão AI; Vitorino R; Duarte JA; Ferreira R; Amado F
    J Proteome Res; 2013 Oct; 12(10):4257-67. PubMed ID: 23964737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondria: A Therapeutic Target for Parkinson's Disease?
    Luo Y; Hoffer A; Hoffer B; Qi X
    Int J Mol Sci; 2015 Sep; 16(9):20704-30. PubMed ID: 26340618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial dysfunction, oxidative stress, and apoptosis revealed by proteomic and transcriptomic analyses of the striata in two mouse models of Parkinson's disease.
    Chin MH; Qian WJ; Wang H; Petyuk VA; Bloom JS; Sforza DM; Laćan G; Liu D; Khan AH; Cantor RM; Bigelow DJ; Melega WP; Camp DG; Smith RD; Smith DJ
    J Proteome Res; 2008 Feb; 7(2):666-77. PubMed ID: 18173235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial-Associated Membranes in Parkinson's Disease.
    Hattori N; Arano T; Hatano T; Mori A; Imai Y
    Adv Exp Med Biol; 2017; 997():157-169. PubMed ID: 28815529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The dysregulated
    Ebanks B; Ingram TL; Katyal G; Ingram JR; Moisoi N; Chakrabarti L
    Aging (Albany NY); 2021 Jun; 13(11):14709-14728. PubMed ID: 34074800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative expression proteomics and phosphoproteomics profile of brain from PINK1 knockout mice: insights into mechanisms of familial Parkinson's disease.
    Triplett JC; Zhang Z; Sultana R; Cai J; Klein JB; Büeler H; Butterfield DA
    J Neurochem; 2015 Jun; 133(5):750-65. PubMed ID: 25626353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial proteomics investigation of a cellular model of impaired dopamine homeostasis, an early step in Parkinson's disease pathogenesis.
    Alberio T; Bondi H; Colombo F; Alloggio I; Pieroni L; Urbani A; Fasano M
    Mol Biosyst; 2014 Jun; 10(6):1332-44. PubMed ID: 24675778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial dysfunction in mouse models of Parkinson's disease revealed by transcriptomics and proteomics.
    Smith DJ
    J Bioenerg Biomembr; 2009 Dec; 41(6):487-91. PubMed ID: 19967437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial dysfunction in Parkinson's disease.
    Winklhofer KF; Haass C
    Biochim Biophys Acta; 2010 Jan; 1802(1):29-44. PubMed ID: 19733240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Mitochondrial disfunction in Parkinson's disease].
    Buneeva OA; Medvedev AE
    Biomed Khim; 2011; 57(3):246-81. PubMed ID: 21863741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondria in the aetiology and pathogenesis of Parkinson's disease.
    Schapira AH
    Lancet Neurol; 2008 Jan; 7(1):97-109. PubMed ID: 18093566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial Dysfunction in Parkinson's Disease: New Mechanistic Insights and Therapeutic Perspectives.
    Park JS; Davis RL; Sue CM
    Curr Neurol Neurosci Rep; 2018 Apr; 18(5):21. PubMed ID: 29616350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial proteomics as a selective tool for unraveling Parkinson's disease pathogenesis.
    Pienaar IS; Dexter DT; Burkhard PR
    Expert Rev Proteomics; 2010 Apr; 7(2):205-26. PubMed ID: 20377388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Balance is the challenge--the impact of mitochondrial dynamics in Parkinson's disease.
    Burbulla LF; Krebiehl G; Krüger R
    Eur J Clin Invest; 2010 Nov; 40(11):1048-60. PubMed ID: 20735469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson's disease.
    Büeler H
    Exp Neurol; 2009 Aug; 218(2):235-46. PubMed ID: 19303005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrative analyses of proteomics and RNA transcriptomics implicate mitochondrial processes, protein folding pathways and GWAS loci in Parkinson disease.
    Dumitriu A; Golji J; Labadorf AT; Gao B; Beach TG; Myers RH; Longo KA; Latourelle JC
    BMC Med Genomics; 2016 Jan; 9():5. PubMed ID: 26793951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The human mitochondrial proteome: oxidative stress, protein modifications and oxidative phosphorylation.
    Gibson BW
    Int J Biochem Cell Biol; 2005 May; 37(5):927-34. PubMed ID: 15743667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteome effects of antipsychotic drugs: Learning from preclinical models.
    Carboni L; Domenici E
    Proteomics Clin Appl; 2016 Apr; 10(4):430-41. PubMed ID: 26548651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HIV-1 transgenic rats display mitochondrial abnormalities consistent with abnormal energy generation and distribution.
    Villeneuve LM; Purnell PR; Stauch KL; Callen SE; Buch SJ; Fox HS
    J Neurovirol; 2016 Oct; 22(5):564-574. PubMed ID: 26843384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.