BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 26750324)

  • 1. Bright and photostable push-pull pyrene dye visualizes lipid order variation between plasma and intracellular membranes.
    Niko Y; Didier P; Mely Y; Konishi G; Klymchenko AS
    Sci Rep; 2016 Jan; 6():18870. PubMed ID: 26750324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase-selective staining of model and cell membranes, lipid droplets and lipoproteins with fluorescent solvatochromic pyrene probes.
    Sot J; Esnal I; Monasterio BG; León-Irra R; Niko Y; Goñi FM; Klymchenko A; Alonso A
    Biochim Biophys Acta Biomembr; 2021 Jan; 1863(1):183470. PubMed ID: 32898535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redesigning Solvatochromic Probe Laurdan for Imaging Lipid Order Selectively in Cell Plasma Membranes.
    Danylchuk DI; Sezgin E; Chabert P; Klymchenko AS
    Anal Chem; 2020 Nov; 92(21):14798-14805. PubMed ID: 33044816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging lipid lateral organization in membranes with C-laurdan in a confocal microscope.
    Dodes Traian MM; Flecha FLG; Levi V
    J Lipid Res; 2012 Mar; 53(3):609-616. PubMed ID: 22184757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid rafts reconstituted in model membranes.
    Dietrich C; Bagatolli LA; Volovyk ZN; Thompson NL; Levi M; Jacobson K; Gratton E
    Biophys J; 2001 Mar; 80(3):1417-28. PubMed ID: 11222302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polarity Mapping of Cells and Embryos by Improved Fluorescent Solvatochromic Pyrene Probe.
    Valanciunaite J; Kempf E; Seki H; Danylchuk DI; Peyriéras N; Niko Y; Klymchenko AS
    Anal Chem; 2020 May; 92(9):6512-6520. PubMed ID: 32153188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disclosure of discrete sites for phospholipid and sterols at the protein-lipid interface in native acetylcholine receptor-rich membrane.
    Antollini SS; Barrantes FJ
    Biochemistry; 1998 Nov; 37(47):16653-62. PubMed ID: 9843433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laurdan fluorescence lifetime discriminates cholesterol content from changes in fluidity in living cell membranes.
    Golfetto O; Hinde E; Gratton E
    Biophys J; 2013 Mar; 104(6):1238-47. PubMed ID: 23528083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalized polarization and time-resolved fluorescence provide evidence for different populations of Laurdan in lipid vesicles.
    Bacalum M; Radu M; Osella S; Knippenberg S; Ameloot M
    J Photochem Photobiol B; 2024 Jan; 250():112833. PubMed ID: 38141326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a new series of fluorescent probes for imaging membrane order.
    Kwiatek JM; Owen DM; Abu-Siniyeh A; Yan P; Loew LM; Gaus K
    PLoS One; 2013; 8(2):e52960. PubMed ID: 23390489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane effects of N-terminal fragment of apolipoprotein A-I: a fluorescent probe study.
    Trusova V; Gorbenko G; Girych M; Adachi E; Mizuguchi C; Sood R; Kinnunen P; Saito H
    J Fluoresc; 2015 Mar; 25(2):253-61. PubMed ID: 25595057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct visualization of the lateral structure of giant vesicles composed of pseudo-binary mixtures of sulfatide, asialo-GM1 and GM1 with POPC.
    Rodi PM; Maggio B; Bagatolli LA
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):544-555. PubMed ID: 29106974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining fluorescence lifetime and polarization microscopy to discriminate phase separated domains in giant unilamellar vesicles.
    Haluska CK; Schröder AP; Didier P; Heissler D; Duportail G; Mély Y; Marques CM
    Biophys J; 2008 Dec; 95(12):5737-47. PubMed ID: 18790852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laurdan monitors different lipids content in eukaryotic membrane during embryonic neural development.
    Bonaventura G; Barcellona ML; Golfetto O; Nourse JL; Flanagan LA; Gratton E
    Cell Biochem Biophys; 2014 Nov; 70(2):785-94. PubMed ID: 24839062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial creatine kinase binding to phospholipids decreases fluidity of membranes and promotes new lipid-induced beta structures as monitored by red edge excitation shift, laurdan fluorescence, and FTIR.
    Granjon T; Vacheron MJ; Vial C; Buchet R
    Biochemistry; 2001 May; 40(20):6016-26. PubMed ID: 11352737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Switchable nile red-based probe for cholesterol and lipid order at the outer leaflet of biomembranes.
    Kucherak OA; Oncul S; Darwich Z; Yushchenko DA; Arntz Y; Didier P; Mély Y; Klymchenko AS
    J Am Chem Soc; 2010 Apr; 132(13):4907-16. PubMed ID: 20225874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LAURDAN since Weber: The Quest for Visualizing Membrane Heterogeneity.
    Gunther G; Malacrida L; Jameson DM; Gratton E; Sánchez SA
    Acc Chem Res; 2021 Feb; 54(4):976-987. PubMed ID: 33513300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mega-stokes pyrene ceramide conjugates for STED imaging of lipid droplets in live cells.
    O Connor D; Byrne A; Berselli GB; Long C; Keyes TE
    Analyst; 2019 Feb; 144(5):1608-1621. PubMed ID: 30631867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-Resolved Laurdan Fluorescence Reveals Insights into Membrane Viscosity and Hydration Levels.
    Ma Y; Benda A; Kwiatek J; Owen DM; Gaus K
    Biophys J; 2018 Oct; 115(8):1498-1508. PubMed ID: 30269886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model for the interaction of 6-lauroyl-2-(N,N-dimethylamino)naphthalene with lipid environments: implications for spectral properties.
    Bagatolli LA; Parasassi T; Fidelio GD; Gratton E
    Photochem Photobiol; 1999 Oct; 70(4):557-64. PubMed ID: 10546552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.