BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 26750438)

  • 1. Quantitative analysis of the cell-surface roughness and viscoelasticity for breast cancer cells discrimination using atomic force microscopy.
    Wang Y; Xu C; Jiang N; Zheng L; Zeng J; Qiu C; Yang H; Xie S
    Scanning; 2016 Nov; 38(6):558-563. PubMed ID: 26750438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic force microscopy indentation and inverse analysis for non-linear viscoelastic identification of breast cancer cells.
    Nguyen N; Shao Y; Wineman A; Fu J; Waas A
    Math Biosci; 2016 Jul; 277():77-88. PubMed ID: 27107978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AFM indentation study of breast cancer cells.
    Li QS; Lee GY; Ong CN; Lim CT
    Biochem Biophys Res Commun; 2008 Oct; 374(4):609-13. PubMed ID: 18656442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Actin Organization on the Stiffness of Living Breast Cancer Cells Revealed by Peak-Force Modulation Atomic Force Microscopy.
    Calzado-Martín A; Encinar M; Tamayo J; Calleja M; San Paulo A
    ACS Nano; 2016 Mar; 10(3):3365-74. PubMed ID: 26901115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viscoelastic properties of normal and cancerous human breast cells are affected differently by contact to adjacent cells.
    Schierbaum N; Rheinlaender J; Schäffer TE
    Acta Biomater; 2017 Jun; 55():239-248. PubMed ID: 28396292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic force microscopy-based microrheology reveals significant differences in the viscoelastic response between malign and benign cell lines.
    Rother J; Nöding H; Mey I; Janshoff A
    Open Biol; 2014 May; 4(5):140046. PubMed ID: 24850913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the viscoelastic properties of cells from different kidney cancer phenotypes measured with atomic force microscopy.
    Rebelo LM; de Sousa JS; Mendes Filho J; Radmacher M
    Nanotechnology; 2013 Feb; 24(5):055102. PubMed ID: 23324556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring nanoscale viscoelastic parameters of cells directly from AFM force-displacement curves.
    Efremov YM; Wang WH; Hardy SD; Geahlen RL; Raman A
    Sci Rep; 2017 May; 7(1):1541. PubMed ID: 28484282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biophysical properties of human breast cancer cells measured using silicon MEMS resonators and atomic force microscopy.
    Corbin EA; Kong F; Lim CT; King WP; Bashir R
    Lab Chip; 2015 Feb; 15(3):839-47. PubMed ID: 25473785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast, multi-frequency, and quantitative nanomechanical mapping of live cells using the atomic force microscope.
    Cartagena-Rivera AX; Wang WH; Geahlen RL; Raman A
    Sci Rep; 2015 Jun; 5():11692. PubMed ID: 26118423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An investigation of the viscoelastic behavior of MCF-10A and MCF-7 cells.
    Heydarian A; Milani D; Moein Fatemi SM
    Biochem Biophys Res Commun; 2020 Aug; 529(2):432-436. PubMed ID: 32703447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An investigation of the viscoelastic properties and the actin cytoskeletal structure of triple negative breast cancer cells.
    Hu J; Zhou Y; Obayemi JD; Du J; Soboyejo WO
    J Mech Behav Biomed Mater; 2018 Oct; 86():1-13. PubMed ID: 29913305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of Breast Cancer Aggressiveness by Cell Mechanics.
    Zbiral B; Weber A; Vivanco MD; Toca-Herrera JL
    Int J Mol Sci; 2023 Jul; 24(15):. PubMed ID: 37569585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Length Scale Matters: Real-Time Elastography versus Nanomechanical Profiling by Atomic Force Microscopy for the Diagnosis of Breast Lesions.
    Zanetti-Dällenbach R; Plodinec M; Oertle P; Redling K; Obermann EC; Lim RYH; Schoenenberger CA
    Biomed Res Int; 2018; 2018():3840597. PubMed ID: 30410929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano-mechanical exploration of the surface and sub-surface of hydrated cells of Staphylococcus epidermidis.
    Méndez-Vilas A; Gallardo-Moreno AM; González-Martín ML
    Antonie Van Leeuwenhoek; 2006; 89(3-4):373-86. PubMed ID: 16779634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined atomic force microscopy (AFM) and traction force microscopy (TFM) reveals a correlation between viscoelastic material properties and contractile prestress of living cells.
    Schierbaum N; Rheinlaender J; Schäffer TE
    Soft Matter; 2019 Feb; 15(8):1721-1729. PubMed ID: 30657157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytomechanical and topological investigation of MCF-7 cells by scanning force microscopy.
    Leporatti S; Vergara D; Zacheo A; Vergaro V; Maruccio G; Cingolani R; Rinaldi R
    Nanotechnology; 2009 Feb; 20(5):055103. PubMed ID: 19417334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale Surface Characterization of Human Erythrocytes by Atomic Force Microscopy: A Critical Review.
    Mukherjee R; Saha M; Routray A; Chakraborty C
    IEEE Trans Nanobioscience; 2015 Sep; 14(6):625-33. PubMed ID: 25935044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation of Plasma Membrane Microviscosity and Cell Stiffness Revealed via Fluorescence-Lifetime Imaging and Atomic Force Microscopy.
    Efremov YM; Shimolina L; Gulin A; Ignatova N; Gubina M; Kuimova MK; Timashev PS; Shirmanova MV
    Cells; 2023 Nov; 12(21):. PubMed ID: 37947661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cancer cell detection in tissue sections using AFM.
    Lekka M; Gil D; Pogoda K; Dulińska-Litewka J; Jach R; Gostek J; Klymenko O; Prauzner-Bechcicki S; Stachura Z; Wiltowska-Zuber J; Okoń K; Laidler P
    Arch Biochem Biophys; 2012 Feb; 518(2):151-6. PubMed ID: 22209753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.