These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 26750438)
1. Quantitative analysis of the cell-surface roughness and viscoelasticity for breast cancer cells discrimination using atomic force microscopy. Wang Y; Xu C; Jiang N; Zheng L; Zeng J; Qiu C; Yang H; Xie S Scanning; 2016 Nov; 38(6):558-563. PubMed ID: 26750438 [TBL] [Abstract][Full Text] [Related]
2. Atomic force microscopy indentation and inverse analysis for non-linear viscoelastic identification of breast cancer cells. Nguyen N; Shao Y; Wineman A; Fu J; Waas A Math Biosci; 2016 Jul; 277():77-88. PubMed ID: 27107978 [TBL] [Abstract][Full Text] [Related]
3. AFM indentation study of breast cancer cells. Li QS; Lee GY; Ong CN; Lim CT Biochem Biophys Res Commun; 2008 Oct; 374(4):609-13. PubMed ID: 18656442 [TBL] [Abstract][Full Text] [Related]
4. Effect of Actin Organization on the Stiffness of Living Breast Cancer Cells Revealed by Peak-Force Modulation Atomic Force Microscopy. Calzado-Martín A; Encinar M; Tamayo J; Calleja M; San Paulo A ACS Nano; 2016 Mar; 10(3):3365-74. PubMed ID: 26901115 [TBL] [Abstract][Full Text] [Related]
5. Viscoelastic properties of normal and cancerous human breast cells are affected differently by contact to adjacent cells. Schierbaum N; Rheinlaender J; Schäffer TE Acta Biomater; 2017 Jun; 55():239-248. PubMed ID: 28396292 [TBL] [Abstract][Full Text] [Related]
6. Atomic force microscopy-based microrheology reveals significant differences in the viscoelastic response between malign and benign cell lines. Rother J; Nöding H; Mey I; Janshoff A Open Biol; 2014 May; 4(5):140046. PubMed ID: 24850913 [TBL] [Abstract][Full Text] [Related]
7. Comparison of the viscoelastic properties of cells from different kidney cancer phenotypes measured with atomic force microscopy. Rebelo LM; de Sousa JS; Mendes Filho J; Radmacher M Nanotechnology; 2013 Feb; 24(5):055102. PubMed ID: 23324556 [TBL] [Abstract][Full Text] [Related]
8. Measuring nanoscale viscoelastic parameters of cells directly from AFM force-displacement curves. Efremov YM; Wang WH; Hardy SD; Geahlen RL; Raman A Sci Rep; 2017 May; 7(1):1541. PubMed ID: 28484282 [TBL] [Abstract][Full Text] [Related]
9. Biophysical properties of human breast cancer cells measured using silicon MEMS resonators and atomic force microscopy. Corbin EA; Kong F; Lim CT; King WP; Bashir R Lab Chip; 2015 Feb; 15(3):839-47. PubMed ID: 25473785 [TBL] [Abstract][Full Text] [Related]
10. An investigation of the viscoelastic behavior of MCF-10A and MCF-7 cells. Heydarian A; Milani D; Moein Fatemi SM Biochem Biophys Res Commun; 2020 Aug; 529(2):432-436. PubMed ID: 32703447 [TBL] [Abstract][Full Text] [Related]
11. An investigation of the viscoelastic properties and the actin cytoskeletal structure of triple negative breast cancer cells. Hu J; Zhou Y; Obayemi JD; Du J; Soboyejo WO J Mech Behav Biomed Mater; 2018 Oct; 86():1-13. PubMed ID: 29913305 [TBL] [Abstract][Full Text] [Related]
12. Characterization of Breast Cancer Aggressiveness by Cell Mechanics. Zbiral B; Weber A; Vivanco MD; Toca-Herrera JL Int J Mol Sci; 2023 Jul; 24(15):. PubMed ID: 37569585 [TBL] [Abstract][Full Text] [Related]
13. Length Scale Matters: Real-Time Elastography versus Nanomechanical Profiling by Atomic Force Microscopy for the Diagnosis of Breast Lesions. Zanetti-Dällenbach R; Plodinec M; Oertle P; Redling K; Obermann EC; Lim RYH; Schoenenberger CA Biomed Res Int; 2018; 2018():3840597. PubMed ID: 30410929 [TBL] [Abstract][Full Text] [Related]
14. Nano-mechanical exploration of the surface and sub-surface of hydrated cells of Staphylococcus epidermidis. Méndez-Vilas A; Gallardo-Moreno AM; González-Martín ML Antonie Van Leeuwenhoek; 2006; 89(3-4):373-86. PubMed ID: 16779634 [TBL] [Abstract][Full Text] [Related]
15. Combined atomic force microscopy (AFM) and traction force microscopy (TFM) reveals a correlation between viscoelastic material properties and contractile prestress of living cells. Schierbaum N; Rheinlaender J; Schäffer TE Soft Matter; 2019 Feb; 15(8):1721-1729. PubMed ID: 30657157 [TBL] [Abstract][Full Text] [Related]
16. Cytomechanical and topological investigation of MCF-7 cells by scanning force microscopy. Leporatti S; Vergara D; Zacheo A; Vergaro V; Maruccio G; Cingolani R; Rinaldi R Nanotechnology; 2009 Feb; 20(5):055103. PubMed ID: 19417334 [TBL] [Abstract][Full Text] [Related]
17. Nanoscale Surface Characterization of Human Erythrocytes by Atomic Force Microscopy: A Critical Review. Mukherjee R; Saha M; Routray A; Chakraborty C IEEE Trans Nanobioscience; 2015 Sep; 14(6):625-33. PubMed ID: 25935044 [TBL] [Abstract][Full Text] [Related]
18. Correlation of Plasma Membrane Microviscosity and Cell Stiffness Revealed via Fluorescence-Lifetime Imaging and Atomic Force Microscopy. Efremov YM; Shimolina L; Gulin A; Ignatova N; Gubina M; Kuimova MK; Timashev PS; Shirmanova MV Cells; 2023 Nov; 12(21):. PubMed ID: 37947661 [TBL] [Abstract][Full Text] [Related]
19. Fast, multi-frequency, and quantitative nanomechanical mapping of live cells using the atomic force microscope. Cartagena-Rivera AX; Wang WH; Geahlen RL; Raman A Sci Rep; 2015 Jun; 5():11692. PubMed ID: 26118423 [TBL] [Abstract][Full Text] [Related]
20. Cancer cell detection in tissue sections using AFM. Lekka M; Gil D; Pogoda K; Dulińska-Litewka J; Jach R; Gostek J; Klymenko O; Prauzner-Bechcicki S; Stachura Z; Wiltowska-Zuber J; Okoń K; Laidler P Arch Biochem Biophys; 2012 Feb; 518(2):151-6. PubMed ID: 22209753 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]