BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

578 related articles for article (PubMed ID: 26750627)

  • 21. Trade-offs between carbon stocks and timber recovery in tropical forests are mediated by logging intensity.
    Roopsind A; Caughlin TT; van der Hout P; Arets E; Putz FE
    Glob Chang Biol; 2018 Jul; 24(7):2862-2874. PubMed ID: 29603495
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fire treatment effects on vegetation structure, fuels, and potential fire severity in western U.S. forests.
    Stephens SL; Moghaddas JJ; Edminster C; Fiedler CE; Haase S; Harrington M; Keeley JE; Knapp EE; McIver JD; Metlen K; Skinner CN; Youngblood A
    Ecol Appl; 2009 Mar; 19(2):305-20. PubMed ID: 19323192
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Less fuel for the next fire? Short-interval fire delays forest recovery and interacting drivers amplify effects.
    Braziunas KH; Kiel NG; Turner MG
    Ecology; 2023 Jun; 104(6):e4042. PubMed ID: 36976178
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantifying fire severity, carbon, and nitrogen emissions in Alaska's boreal forest.
    Boby LA; Schuur EA; Mack MC; Verbyla D; Johnstone JF
    Ecol Appl; 2010 Sep; 20(6):1633-47. PubMed ID: 20945764
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fire survival of lowland tropical rain forest trees in relation to stem diameter and topographic position.
    Slik JW; Eichhorn KA
    Oecologia; 2003 Nov; 137(3):446-55. PubMed ID: 12920641
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Postfire response of flood-regenerating riparian vegetation in a semi-arid landscape.
    Pettit NE; Naiman RJ
    Ecology; 2007 Aug; 88(8):2094-104. PubMed ID: 17824440
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Drought-driven wildfire impacts on structure and dynamics in a wet Central Amazonian forest.
    Pontes-Lopes A; Silva CVJ; Barlow J; Rincón LM; Campanharo WA; Nunes CA; de Almeida CT; Silva Júnior CHL; Cassol HLG; Dalagnol R; Stark SC; Graça PMLA; Aragão LEOC
    Proc Biol Sci; 2021 May; 288(1951):20210094. PubMed ID: 34004131
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thinner bark increases sensitivity of wetter Amazonian tropical forests to fire.
    Staver AC; Brando PM; Barlow J; Morton DC; Paine CET; Malhi Y; Araujo Murakami A; Del Aguila Pasquel J
    Ecol Lett; 2020 Jan; 23(1):99-106. PubMed ID: 31642170
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wildfire and forest disease interaction lead to greater loss of soil nutrients and carbon.
    Cobb RC; Meentemeyer RK; Rizzo DM
    Oecologia; 2016 Sep; 182(1):265-76. PubMed ID: 27164911
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Post-fire recovery of a dense ombrophylous forest in Amazon.
    Andrade DFC; Gama JRV; Ruschel AR; Melo LO; Avila AL; Carvalho JOP
    An Acad Bras Cienc; 2019 Jun; 91(2):e20170840. PubMed ID: 31241696
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Replicated throughfall exclusion experiment in an Indonesian perhumid rainforest: wood production, litter fall and fine root growth under simulated drought.
    Moser G; Schuldt B; Hertel D; Horna V; Coners H; Barus H; Leuschner C
    Glob Chang Biol; 2014 May; 20(5):1481-97. PubMed ID: 24115242
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Early recruitment responses to interactions between frequent fires, nutrients, and herbivory in the southern Amazon.
    Massad TJ; Balch JK; Mews CL; Porto P; Marimon Junior BH; Quintino RM; Brando PM; Vieira SA; Trumbore SE
    Oecologia; 2015 Jul; 178(3):807-17. PubMed ID: 25676107
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Abrupt fire regime change may cause landscape-wide loss of mature obligate seeder forests.
    Bowman DM; Murphy BP; Neyland DL; Williamson GJ; Prior LD
    Glob Chang Biol; 2014 Mar; 20(3):1008-15. PubMed ID: 24132866
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Landscape fragmentation, severe drought, and the new Amazon forest fire regime.
    Alencar AA; Brando PM; Asner GP; Putz FE
    Ecol Appl; 2015 Sep; 25(6):1493-505. PubMed ID: 26552259
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pre-outbreak forest conditions mediate the effects of spruce beetle outbreaks on fuels in subalpine forests of Colorado.
    Mietkiewicz N; Kulakowski D; Veblen TT
    Ecol Appl; 2018 Mar; 28(2):457-472. PubMed ID: 29405527
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temporal variability of forest fires in eastern Amazonia.
    Alencar A; Asner GP; Knapp D; Zarin D
    Ecol Appl; 2011 Oct; 21(7):2397-412. PubMed ID: 22073631
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tree growth and stem carbon accumulation in human-modified Amazonian forests following drought and fire.
    Berenguer E; Malhi Y; Brando P; Cardoso Nunes Cordeiro A; Ferreira J; França F; Chesini Rossi L; Maria Moraes de Seixas M; Barlow J
    Philos Trans R Soc Lond B Biol Sci; 2018 Oct; 373(1760):. PubMed ID: 30297467
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Understorey fire frequency and the fate of burned forests in southern Amazonia.
    Morton DC; Le Page Y; DeFries R; Collatz GJ; Hurtt GC
    Philos Trans R Soc Lond B Biol Sci; 2013 Jun; 368(1619):20120163. PubMed ID: 23610169
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessing the Effects of Fire Disturbances and Timber Management on Carbon Storage in the Greater Yellowstone Ecosystem.
    Zhao F; Healey SP; Huang C; McCarter JB; Garrard C; Goeking SA; Zhu Z
    Environ Manage; 2018 Oct; 62(4):766-776. PubMed ID: 29947968
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Long-term efficacy of fuel reduction and restoration treatments in Northern Rockies dry forests.
    Hood SM; Crotteau JS; Cleveland CC
    Ecol Appl; 2024 Mar; 34(2):e2940. PubMed ID: 38212051
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.