These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 26750867)

  • 1. The Role of Electrostatic Interactions in Folding of β-Proteins.
    Davis CM; Dyer RB
    J Am Chem Soc; 2016 Feb; 138(4):1456-64. PubMed ID: 26750867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of an ultrafast folding subdomain in the context of a larger protein fold.
    Davis CM; Dyer RB
    J Am Chem Soc; 2013 Dec; 135(51):19260-7. PubMed ID: 24320936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. WW domain folding complexity revealed by infrared spectroscopy.
    Davis CM; Dyer RB
    Biochemistry; 2014 Sep; 53(34):5476-84. PubMed ID: 25121968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast helix formation in the B domain of protein A revealed by site-specific infrared probes.
    Davis CM; Cooper AK; Dyer RB
    Biochemistry; 2015 Mar; 54(9):1758-66. PubMed ID: 25706439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporating beta-turns and a turn mimetic out of context in loop 1 of the WW domain affords cooperatively folded beta-sheets.
    Kaul R; Angeles AR; Jäger M; Powers ET; Kelly JW
    J Am Chem Soc; 2001 Jun; 123(22):5206-12. PubMed ID: 11457382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissecting the stability of a beta-hairpin peptide that folds in water: NMR and molecular dynamics analysis of the beta-turn and beta-strand contributions to folding.
    Griffiths-Jones SR; Maynard AJ; Searle MS
    J Mol Biol; 1999 Oct; 292(5):1051-69. PubMed ID: 10512702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triaspartate: a model system for conformationally flexible DDD motifs in proteins.
    Duitch L; Toal S; Measey TJ; Schweitzer-Stenner R
    J Phys Chem B; 2012 May; 116(17):5160-71. PubMed ID: 22435395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the mechanism of beta-sheet folding from a chemical and biological perspective.
    Jager M; Deechongkit S; Koepf EK; Nguyen H; Gao J; Powers ET; Gruebele M; Kelly JW
    Biopolymers; 2008; 90(6):751-8. PubMed ID: 18844292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the key factors that control the rate of beta-hairpin folding.
    Du D; Zhu Y; Huang CY; Gai F
    Proc Natl Acad Sci U S A; 2004 Nov; 101(45):15915-20. PubMed ID: 15520391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the mechanism of beta-hairpin folding via phi-value analysis.
    Du D; Tucker MJ; Gai F
    Biochemistry; 2006 Feb; 45(8):2668-78. PubMed ID: 16489760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallel folding pathways of Fip35 WW domain explained by infrared spectra and their computer simulation.
    Zanetti-Polzi L; Davis CM; Gruebele M; Dyer RB; Amadei A; Daidone I
    FEBS Lett; 2017 Oct; 591(20):3265-3275. PubMed ID: 28881468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Infrared study of the stability and folding kinetics of a 15-residue beta-hairpin.
    Xu Y; Oyola R; Gai F
    J Am Chem Soc; 2003 Dec; 125(50):15388-94. PubMed ID: 14664583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into stabilizing weak interactions in designed peptide beta-hairpins.
    Searle MS
    Biopolymers; 2004; 76(2):185-95. PubMed ID: 15054898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Folding dynamics of the Trp-cage miniprotein: evidence for a native-like intermediate from combined time-resolved vibrational spectroscopy and molecular dynamics simulations.
    Meuzelaar H; Marino KA; Huerta-Viga A; Panman MR; Smeenk LE; Kettelarij AJ; van Maarseveen JH; Timmerman P; Bolhuis PG; Woutersen S
    J Phys Chem B; 2013 Oct; 117(39):11490-501. PubMed ID: 24050152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulations of a beta-hairpin fragment of protein G: balance between side-chain and backbone forces.
    Ma B; Nussinov R
    J Mol Biol; 2000 Mar; 296(4):1091-104. PubMed ID: 10686106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of different β-turns in β-hairpin conformation and stability studied by optical spectroscopy.
    Wu L; McElheny D; Setnicka V; Hilario J; Keiderling TA
    Proteins; 2012 Jan; 80(1):44-60. PubMed ID: 21989967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dramatic stabilization of an SH3 domain by a single substitution: roles of the folded and unfolded states.
    Mok YK; Elisseeva EL; Davidson AR; Forman-Kay JD
    J Mol Biol; 2001 Mar; 307(3):913-28. PubMed ID: 11273710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A quantitative connection of experimental and simulated folding landscapes by vibrational spectroscopy.
    Davis CM; Zanetti-Polzi L; Gruebele M; Amadei A; Dyer RB; Daidone I
    Chem Sci; 2018 Dec; 9(48):9002-9011. PubMed ID: 30647892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Residue specific resolution of protein folding dynamics using isotope-edited infrared temperature jump spectroscopy.
    Brewer SH; Song B; Raleigh DP; Dyer RB
    Biochemistry; 2007 Mar; 46(11):3279-85. PubMed ID: 17305369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of hPin1 WW N-terminal domain boundaries on function, protein stability, and folding.
    Jäger M; Nguyen H; Dendle M; Gruebele M; Kelly JW
    Protein Sci; 2007 Jul; 16(7):1495-501. PubMed ID: 17586778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.