BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 26750921)

  • 1. Fluorescent supramolecular nanoparticles signal the loading of electrostatically charged cargo.
    Graña-Suárez L; Verboom W; Huskens J
    Chem Commun (Camb); 2016 Feb; 52(12):2597-600. PubMed ID: 26750921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loading and release of fluorescent oligoarginine peptides into/from pH-responsive anionic supramolecular nanoparticles.
    Graña-Suárez L; Verboom W; Buckle T; Rood M; van Leeuwen FWB; Huskens J
    J Mater Chem B; 2016 Jun; 4(22):4025-4032. PubMed ID: 32263101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanised nanoparticles for drug delivery.
    Cotí KK; Belowich ME; Liong M; Ambrogio MW; Lau YA; Khatib HA; Zink JI; Khashab NM; Stoddart JF
    Nanoscale; 2009 Oct; 1(1):16-39. PubMed ID: 20644858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual stimuli-responsive self-assembled supramolecular nanoparticles.
    Stoffelen C; Voskuhl J; Jonkheijm P; Huskens J
    Angew Chem Int Ed Engl; 2014 Mar; 53(13):3400-4. PubMed ID: 24615852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Encapsulation and release mechanisms in coordination polymer nanoparticles.
    Amorín-Ferré L; Busqué F; Bourdelande JL; Ruiz-Molina D; Hernando J; Novio F
    Chemistry; 2013 Dec; 19(51):17508-16. PubMed ID: 24258853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supramolecular Translation of Enzymatically Triggered Disassembly of Micelles into Tunable Fluorescent Responses.
    Buzhor M; Harnoy AJ; Tirosh E; Barak A; Schwartz T; Amir RJ
    Chemistry; 2015 Oct; 21(44):15633-8. PubMed ID: 26366522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclodextrin-based host-guest supramolecular nanoparticles for delivery: from design to applications.
    Hu QD; Tang GP; Chu PK
    Acc Chem Res; 2014 Jul; 47(7):2017-25. PubMed ID: 24873201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytosolic delivery of LDL nanoparticle cargo using photochemical internalization.
    Jin H; Lovell JF; Chen J; Ng K; Cao W; Ding L; Zhang Z; Zheng G
    Photochem Photobiol Sci; 2011 May; 10(5):810-6. PubMed ID: 21344108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic and bioinspired cage nanoparticles for drug delivery.
    Deshayes S; Gref R
    Nanomedicine (Lond); 2014 Jul; 9(10):1545-64. PubMed ID: 25253501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supramolecular Fluorescent Nanoparticles Constructed via Multiple Non-Covalent Interactions for the Detection of Hydrogen Peroxide in Cancer Cells.
    Wei X; Dong R; Wang D; Zhao T; Gao Y; Duffy P; Zhu X; Wang W
    Chemistry; 2015 Aug; 21(32):11427-34. PubMed ID: 26133314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclodextrin-based supramolecular nanoparticles stabilized by balancing attractive host-guest and repulsive electrostatic interactions.
    Graña-Suárez L; Verboom W; Huskens J
    Chem Commun (Camb); 2014 Jul; 50(55):7280-2. PubMed ID: 24871809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoparticles functionalized with supramolecular host-guest systems for nanomedicine and healthcare.
    Wu Z; Song N; Menz R; Pingali B; Yang YW; Zheng Y
    Nanomedicine (Lond); 2015 May; 10(9):1493-514. PubMed ID: 25996121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pH-operated nanopistons on the surfaces of mesoporous silica nanoparticles.
    Zhao YL; Li Z; Kabehie S; Botros YY; Stoddart JF; Zink JI
    J Am Chem Soc; 2010 Sep; 132(37):13016-25. PubMed ID: 20799689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy-Transfer Schemes To Probe Fluorescent Nanocarriers and Their Emissive Cargo.
    Thapaliya ER; Fowley C; Callan B; Tang S; Zhang Y; Callan JF; Raymo FM
    Langmuir; 2015 Sep; 31(35):9557-65. PubMed ID: 26275045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charged nanoparticles as protein delivery systems: a feasibility study using lysozyme as model protein.
    Cai C; Bakowsky U; Rytting E; Schaper AK; Kissel T
    Eur J Pharm Biopharm; 2008 May; 69(1):31-42. PubMed ID: 18023160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Erythrocyte incubation as a method for free-dye presence determination in fluorescently labeled nanoparticles.
    Andreozzi P; Martinelli C; Carney RP; Carney TM; Stellacci F
    Mol Pharm; 2013 Mar; 10(3):875-82. PubMed ID: 23190092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Assembling Nanoparticles of Amphiphilic Polymers for In Vitro and In Vivo FRET Imaging.
    Garcia-Amorós J; Tang S; Zhang Y; Thapaliya ER; Raymo FM
    Top Curr Chem; 2016; 370():29-59. PubMed ID: 26589505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cosynthesis of cargo-loaded hydroxyapatite/alginate core-shell nanoparticles (HAP@Alg) as pH-responsive nanovehicles by a pre-gel method.
    Liang YH; Liu CH; Liao SH; Lin YY; Tang HW; Liu SY; Lai IR; Wu KC
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):6720-7. PubMed ID: 23151216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced drug loading on magnetic nanoparticles by layer-by-layer assembly using drug conjugates: blood compatibility evaluation and targeted drug delivery in cancer cells.
    Manju S; Sreenivasan K
    Langmuir; 2011 Dec; 27(23):14489-96. PubMed ID: 21988497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH-responsive supramolecular vesicles based on water-soluble pillar[6]arene and ferrocene derivative for drug delivery.
    Duan Q; Cao Y; Li Y; Hu X; Xiao T; Lin C; Pan Y; Wang L
    J Am Chem Soc; 2013 Jul; 135(28):10542-9. PubMed ID: 23795864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.