BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 26750924)

  • 1. An Approach for Identification of Novel Drug Targets in Streptococcus pyogenes SF370 Through Pathway Analysis.
    Singh S; Singh DB; Singh A; Gautam B; Ram G; Dwivedi S; Ramteke PW
    Interdiscip Sci; 2016 Dec; 8(4):388-394. PubMed ID: 26750924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of potential antivirulence agents by substitution-oriented screening for inhibitors of Streptococcus pyogenes sortase A.
    Wójcik M; Eleftheriadis N; Zwinderman MRH; Dömling ASS; Dekker FJ; Boersma YL
    Eur J Med Chem; 2019 Jan; 161():93-100. PubMed ID: 30343193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular modeling and simulation of FabG, an enzyme involved in the fatty acid pathway of Streptococcus pyogenes.
    Shafreen RB; Pandian SK
    J Mol Graph Model; 2013 Sep; 45():1-12. PubMed ID: 23988477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic pathway analysis of S. pneumoniae: an in silico approach towards drug-design.
    Singh S; Malik BK; Sharma DK
    J Bioinform Comput Biol; 2007 Feb; 5(1):135-53. PubMed ID: 17477495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Core Proteomic Analysis of Unique Metabolic Pathways of Salmonella enterica for the Identification of Potential Drug Targets.
    Uddin R; Sufian M
    PLoS One; 2016; 11(1):e0146796. PubMed ID: 26799565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic pathway analysis approach: identification of novel therapeutic target against methicillin resistant Staphylococcus aureus.
    Uddin R; Saeed K; Khan W; Azam SS; Wadood A
    Gene; 2015 Feb; 556(2):213-26. PubMed ID: 25436466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Silico Core Proteomics and Molecular Docking Approaches for the Identification of Novel Inhibitors against
    Rehman A; Wang X; Ahmad S; Shahid F; Aslam S; Ashfaq UA; Alrumaihi F; Qasim M; Hashem A; Al-Hazzani AA; Abd Allah EF
    Int J Environ Res Public Health; 2021 Oct; 18(21):. PubMed ID: 34769873
    [No Abstract]   [Full Text] [Related]  

  • 8. Potential drug targets in Mycobacterium tuberculosis through metabolic pathway analysis.
    Anishetty S; Pulimi M; Pennathur G
    Comput Biol Chem; 2005 Oct; 29(5):368-78. PubMed ID: 16213791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational Identification of Essential Enzymes as Potential Drug Targets in
    Narad P; Himanshu ; Bansal H
    J Microbiol Biotechnol; 2021 Apr; 31(4):621-629. PubMed ID: 33323673
    [No Abstract]   [Full Text] [Related]  

  • 10. Identification of putative drug targets in Vancomycin-resistant Staphylococcus aureus (VRSA) using computer aided protein data analysis.
    Hasan MA; Khan MA; Sharmin T; Hasan Mazumder MH; Chowdhury AS
    Gene; 2016 Jan; 575(1):132-43. PubMed ID: 26319513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-silico Subtractive Proteomic Analysis Approach for Therapeutic Targets in MDR Salmonella enterica subsp. enterica serovar Typhi str. CT18.
    Rahman N; Muhammad I; Nayab GE; Khan H; Filosa R; Xiao J; Hassan STS
    Curr Top Med Chem; 2019; 19(29):2708-2717. PubMed ID: 31702501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein interaction network analysis--approach for potential drug target identification in Mycobacterium tuberculosis.
    Kushwaha SK; Shakya M
    J Theor Biol; 2010 Jan; 262(2):284-94. PubMed ID: 19833135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploration of fluoroquinolone resistance in Streptococcus pyogenes: comparative structure analysis of wild-type and mutant DNA gyrase.
    Shafreen RM; Selvaraj C; Singh SK; Pandian SK
    J Mol Recognit; 2013 Jun; 26(6):276-85. PubMed ID: 23595809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential antibiotic and anti-infective effects of rhodomyrtone from Rhodomyrtus tomentosa (Aiton) Hassk. on Streptococcus pyogenes as revealed by proteomics.
    Limsuwan S; Hesseling-Meinders A; Voravuthikunchai SP; van Dijl JM; Kayser O
    Phytomedicine; 2011 Aug; 18(11):934-40. PubMed ID: 21439802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular modeling on streptolysin-O of multidrug resistant Streptococcus pyogenes and computer aided screening and in vitro assay for novel herbal inhibitors.
    Skariyachan S; Narayan NS; Aggimath TS; Nagaraj S; Reddy MS; Narayanappa R
    Curr Comput Aided Drug Des; 2014 Mar; 10(1):59-74. PubMed ID: 24694051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulfonamide resistance in Streptococcus pyogenes is associated with differences in the amino acid sequence of its chromosomal dihydropteroate synthase.
    Swedberg G; Ringertz S; Sköld O
    Antimicrob Agents Chemother; 1998 May; 42(5):1062-7. PubMed ID: 9593127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inactivation of the Rgg2 transcriptional regulator ablates the virulence of Streptococcus pyogenes.
    Zutkis AA; Anbalagan S; Chaussee MS; Dmitriev AV
    PLoS One; 2014; 9(12):e114784. PubMed ID: 25486272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subtractive genomics approach to identify putative drug targets and identification of drug-like molecules for beta subunit of DNA polymerase III in Streptococcus species.
    Georrge JJ; Umrania VV
    Appl Biochem Biotechnol; 2012 Jul; 167(5):1377-95. PubMed ID: 22415782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of potential drug targets in Yersinia pestis using metabolic pathway analysis: MurE ligase as a case study.
    Sharma A; Pan A
    Eur J Med Chem; 2012 Nov; 57():185-95. PubMed ID: 23059547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper Tolerance and Characterization of a Copper-Responsive Operon, copYAZ, in an M1T1 Clinical Strain of Streptococcus pyogenes.
    Young CA; Gordon LD; Fang Z; Holder RC; Reid SD
    J Bacteriol; 2015 Aug; 197(15):2580-92. PubMed ID: 26013489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.