These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 26750986)

  • 1. Factors Affecting Peptide Interactions with Surface-Bound Microgels.
    Nyström L; Nordström R; Bramhill J; Saunders BR; Álvarez-Asencio R; Rutland MW; Malmsten M
    Biomacromolecules; 2016 Feb; 17(2):669-78. PubMed ID: 26750986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualizing the interaction between poly-L-lysine and poly(acrylic acid) microgels using microscopy techniques: effect of electrostatics and peptide size.
    Bysell H; Malmsten M
    Langmuir; 2006 Jun; 22(12):5476-84. PubMed ID: 16732680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction between lysozyme and poly(acrylic acid) microgels.
    Johansson C; Hansson P; Malmsten M
    J Colloid Interface Sci; 2007 Dec; 316(2):350-9. PubMed ID: 17719601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport of poly-L-lysine into oppositely charged poly(acrylic acid) microgels and its effect on gel deswelling.
    Bysell H; Hansson P; Malmsten M
    J Colloid Interface Sci; 2008 Jul; 323(1):60-9. PubMed ID: 18402972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors affecting enzymatic degradation of microgel-bound peptides.
    Månsson R; Frenning G; Malmsten M
    Biomacromolecules; 2013 Jul; 14(7):2317-25. PubMed ID: 23731406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions between homopolypeptides and lightly cross-linked microgels.
    Bysell H; Malmsten M
    Langmuir; 2009 Jan; 25(1):522-8. PubMed ID: 19061315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of charge density on the interaction between cationic peptides and oppositely charged microgels.
    Bysell H; Hansson P; Malmsten M
    J Phys Chem B; 2010 Jun; 114(21):7207-15. PubMed ID: 20459071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of hydrophobicity on the interaction between antimicrobial peptides and poly(acrylic acid) microgels.
    Bysell H; Hansson P; Schmidtchen A; Malmsten M
    J Phys Chem B; 2010 Jan; 114(3):1307-13. PubMed ID: 20047286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational Aspects of High Content Packing of Antimicrobial Peptides in Polymer Microgels.
    Singh S; Datta A; Borro BC; Davoudi M; Schmidtchen A; Bhunia A; Malmsten M
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40094-40106. PubMed ID: 29087182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptide-microgel interactions in the strong coupling regime.
    Hansson P; Bysell H; Månsson R; Malmsten M
    J Phys Chem B; 2012 Sep; 116(35):10964-75. PubMed ID: 22881998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding and release of consensus peptides by poly(acrylic acid) microgels.
    Bysell H; Schmidtchen A; Malmsten M
    Biomacromolecules; 2009 Aug; 10(8):2162-8. PubMed ID: 19583241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptide-Loaded Microgels as Antimicrobial and Anti-Inflammatory Surface Coatings.
    Nyström L; Strömstedt AA; Schmidtchen A; Malmsten M
    Biomacromolecules; 2018 Aug; 19(8):3456-3466. PubMed ID: 29976055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane interactions of microgels as carriers of antimicrobial peptides.
    Nordström R; Nyström L; Andrén OCJ; Malkoch M; Umerska A; Davoudi M; Schmidtchen A; Malmsten M
    J Colloid Interface Sci; 2018 Mar; 513():141-150. PubMed ID: 29145017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembled poly(ethylene glycol)-co-acrylic acid microgels to inhibit bacterial colonization of synthetic surfaces.
    Wang Q; Uzunoglu E; Wu Y; Libera M
    ACS Appl Mater Interfaces; 2012 May; 4(5):2498-506. PubMed ID: 22519439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of lysozyme uptake in poly(acrylic acid) microgels.
    Johansson C; Hansson P; Malmsten M
    J Phys Chem B; 2009 May; 113(18):6183-93. PubMed ID: 19366242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of peptide secondary structure on the interaction with oppositely charged microgels.
    Månsson R; Bysell H; Hansson P; Schmidtchen A; Malmsten M
    Biomacromolecules; 2011 Feb; 12(2):419-24. PubMed ID: 21182237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of microgel morphology on functionalized microgel-drug interactions.
    Hoare T; Pelton R
    Langmuir; 2008 Feb; 24(3):1005-12. PubMed ID: 18179266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Avidin-Biotin Cross-Linked Microgel Multilayers as Carriers for Antimicrobial Peptides.
    Nyström L; Al-Rammahi N; Malekkhaiat Häffner S; Strömstedt AA; Browning KL; Malmsten M
    Biomacromolecules; 2018 Dec; 19(12):4691-4702. PubMed ID: 30427659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrostatic Swelling Transitions in Surface-Bound Microgels.
    Nyström L; Álvarez-Asencio R; Frenning G; Saunders BR; Rutland MW; Malmsten M
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):27129-27139. PubMed ID: 27644921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Charge-switching, amphoteric glucose-responsive microgels with physiological swelling activity.
    Hoare T; Pelton R
    Biomacromolecules; 2008 Feb; 9(2):733-40. PubMed ID: 18198833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.