These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 26751001)
1. Effective Biological DeNOx of Industrial Flue Gas by the Mixotrophic Cultivation of an Oil-Producing Green Alga Chlorella sp. C2. Chen W; Zhang S; Rong J; Li X; Chen H; He C; Wang Q Environ Sci Technol; 2016 Feb; 50(3):1620-7. PubMed ID: 26751001 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of an oil-producing green alga Chlorella sp. C2 for biological DeNOx of industrial flue gases. Zhang X; Chen H; Chen W; Qiao Y; He C; Wang Q Environ Sci Technol; 2014 Sep; 48(17):10497-504. PubMed ID: 25105531 [TBL] [Abstract][Full Text] [Related]
3. Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp. Kao CY; Chen TY; Chang YB; Chiu TW; Lin HY; Chen CD; Chang JS; Lin CS Bioresour Technol; 2014 Aug; 166():485-93. PubMed ID: 24950094 [TBL] [Abstract][Full Text] [Related]
4. Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures. Chiu SY; Kao CY; Huang TT; Lin CJ; Ong SC; Chen CD; Chang JS; Lin CS Bioresour Technol; 2011 Oct; 102(19):9135-42. PubMed ID: 21802285 [TBL] [Abstract][Full Text] [Related]
5. Mixotrophic cultivation of oleaginous Chlorella sp. KR-1 mediated by actual coal-fired flue gas for biodiesel production. Praveenkumar R; Kim B; Choi E; Lee K; Cho S; Hyun JS; Park JY; Lee YC; Lee HU; Lee JS; Oh YK Bioprocess Biosyst Eng; 2014 Oct; 37(10):2083-94. PubMed ID: 24719225 [TBL] [Abstract][Full Text] [Related]
6. Improved biomass and lipid production in a mixotrophic culture of Chlorella sp. KR-1 with addition of coal-fired flue-gas. Praveenkumar R; Kim B; Choi E; Lee K; Park JY; Lee JS; Lee YC; Oh YK Bioresour Technol; 2014 Nov; 171():500-5. PubMed ID: 25227588 [TBL] [Abstract][Full Text] [Related]
7. A biorefinery for valorization of industrial waste-water and flue gas by microalgae for waste mitigation, carbon-dioxide sequestration and algal biomass production. Yadav G; Dash SK; Sen R Sci Total Environ; 2019 Oct; 688():129-135. PubMed ID: 31229810 [TBL] [Abstract][Full Text] [Related]
8. Enhanced lipid production in Chlorella pyrenoidosa by continuous culture. Wen X; Geng Y; Li Y Bioresour Technol; 2014 Jun; 161():297-303. PubMed ID: 24717322 [TBL] [Abstract][Full Text] [Related]
9. High cell density lipid rich cultivation of a novel microalgal isolate Chlorella sorokiniana FC6 IITG in a single-stage fed-batch mode under mixotrophic condition. Kumar V; Muthuraj M; Palabhanvi B; Ghoshal AK; Das D Bioresour Technol; 2014 Oct; 170():115-124. PubMed ID: 25125198 [TBL] [Abstract][Full Text] [Related]
10. The acclimation of Chlorella to high-level nitrite for potential application in biological NOx removal from industrial flue gases. Li T; Xu G; Rong J; Chen H; He C; Giordano M; Wang Q J Plant Physiol; 2016 May; 195():73-9. PubMed ID: 27010349 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous microalgal biomass production and CO Kuo CM; Jian JF; Lin TH; Chang YB; Wan XH; Lai JT; Chang JS; Lin CS Bioresour Technol; 2016 Dec; 221():241-250. PubMed ID: 27643732 [TBL] [Abstract][Full Text] [Related]
12. Integrated lipid production, CO Du K; Wen X; Wang Z; Liang F; Luo L; Peng X; Xu Y; Geng Y; Li Y Environ Sci Pollut Res Int; 2019 Jun; 26(16):16195-16209. PubMed ID: 30972683 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous carbon dioxide sequestration and nitrate removal by Chlorella vulgaris and Pseudomonas sp. consortium. Yu Q; Yin M; Chen Y; Liu S; Wang S; Li Y; Cui H; Yu D; Ge B; Huang F J Environ Manage; 2023 May; 333():117389. PubMed ID: 36758399 [TBL] [Abstract][Full Text] [Related]
14. Improving carbohydrate production of Chlorella sorokiniana NIES-2168 through semi-continuous process coupled with mixotrophic cultivation. Wang Y; Chiu SY; Ho SH; Liu Z; Hasunuma T; Chang TT; Chang KF; Chang JS; Ren NQ; Kondo A Biotechnol J; 2016 Aug; 11(8):1072-81. PubMed ID: 27312599 [TBL] [Abstract][Full Text] [Related]
15. Mixotrophic cultivation of microalgae using industrial flue gases for biodiesel production. Kandimalla P; Desi S; Vurimindi H Environ Sci Pollut Res Int; 2016 May; 23(10):9345-54. PubMed ID: 26304814 [TBL] [Abstract][Full Text] [Related]
16. Carbon dioxide sequestration from industrial flue gas by Chlorella sorokiniana. Kumar K; Banerjee D; Das D Bioresour Technol; 2014; 152():225-33. PubMed ID: 24292202 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of microalgal biomass productivity through mixotrophic culture process utilizing waste soy sauce and industrial flue gas. Lee SY; Lee JS; Sim SJ Bioresour Technol; 2023 Apr; 373():128719. PubMed ID: 36773814 [TBL] [Abstract][Full Text] [Related]
18. Mixotrophic continuous flow cultivation of Chlorella protothecoides for lipids. Wang Y; Rischer H; Eriksen NT; Wiebe MG Bioresour Technol; 2013 Sep; 144():608-14. PubMed ID: 23907064 [TBL] [Abstract][Full Text] [Related]
19. Mass transfer characteristics and effect of flue gas used in microalgae culture. Wang B; Xu YF; Sun ZL Appl Microbiol Biotechnol; 2022 Nov; 106(21):7013-7025. PubMed ID: 36173453 [TBL] [Abstract][Full Text] [Related]
20. Cultivation of Chlorella sp. with livestock waste compost for lipid production. Zhu LD; Li ZH; Guo DB; Huang F; Nugroho Y; Xia K Bioresour Technol; 2017 Jan; 223():296-300. PubMed ID: 27729191 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]