These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 26751057)

  • 1. A lithium-oxygen battery based on lithium superoxide.
    Lu J; Lee YJ; Luo X; Lau KC; Asadi M; Wang HH; Brombosz S; Wen J; Zhai D; Chen Z; Miller DJ; Jeong YS; Park JB; Fang ZZ; Kumar B; Salehi-Khojin A; Sun YK; Curtiss LA; Amine K
    Nature; 2016 Jan; 529(7586):377-82. PubMed ID: 26751057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacial effects on lithium superoxide disproportionation in Li-O₂ batteries.
    Zhai D; Lau KC; Wang HH; Wen J; Miller DJ; Lu J; Kang F; Li B; Yang W; Gao J; Indacochea E; Curtiss LA; Amine K
    Nano Lett; 2015 Feb; 15(2):1041-6. PubMed ID: 25615912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(vinylidene fluoride) (PVDF) Binder Degradation in Li-O
    Papp JK; Forster JD; Burke CM; Kim HW; Luntz AC; Shelby RM; Urban JJ; McCloskey BD
    J Phys Chem Lett; 2017 Mar; 8(6):1169-1174. PubMed ID: 28240555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Template assisted lithium superoxide growth for lithium-oxygen batteries.
    Wang HH; Zhang C; Gao J; Lau KC; Plunkett ST; Park M; Amine R; Curtiss LA
    Faraday Discuss; 2024 Jan; 248(0):48-59. PubMed ID: 37791512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unexpected Li2O2 Film Growth on Carbon Nanotube Electrodes with CeO2 Nanoparticles in Li-O2 Batteries.
    Yang C; Wong RA; Hong M; Yamanaka K; Ohta T; Byon HR
    Nano Lett; 2016 May; 16(5):2969-74. PubMed ID: 27105122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and Stability of Lithium Superoxide Clusters and Relevance to Li-O2 Batteries.
    Das U; Lau KC; Redfern PC; Curtiss LA
    J Phys Chem Lett; 2014 Mar; 5(5):813-9. PubMed ID: 26274072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical prediction of LiScO
    Liu Z; Deng H; Zhang S; Hu W; Gao F
    Phys Chem Chem Phys; 2018 Aug; 20(34):22351-22358. PubMed ID: 30128455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Operando observation of the gold-electrolyte interface in Li-O2 batteries.
    Gittleson FS; Ryu WH; Taylor AD
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19017-25. PubMed ID: 25318060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raman Evidence for Late Stage Disproportionation in a Li-O2 Battery.
    Zhai D; Wang HH; Lau KC; Gao J; Redfern PC; Kang F; Li B; Indacochea E; Das U; Sun HH; Sun HJ; Amine K; Curtiss LA
    J Phys Chem Lett; 2014 Aug; 5(15):2705-10. PubMed ID: 26277967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cesium Lead Bromide Perovskite-Based Lithium-Oxygen Batteries.
    Zhou Y; Gu Q; Li Y; Tao L; Tan H; Yin K; Zhou J; Guo S
    Nano Lett; 2021 Jun; 21(11):4861-4867. PubMed ID: 34044536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical evidence of water serving as a promoter for lithium superoxide disproportionation in Li-O
    Shan N; Redfern PC; Ngo AT; Zapol P; Markovic N; Curtiss LA
    Phys Chem Chem Phys; 2021 May; 23(17):10440-10447. PubMed ID: 33890602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LiO
    Zhang X; Guo L; Gan L; Zhang Y; Wang J; Johnson LR; Bruce PG; Peng Z
    J Phys Chem Lett; 2017 May; 8(10):2334-2338. PubMed ID: 28481552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aprotic Lithium-Oxygen Batteries Based on Nonsolid Discharge Products.
    Song LN; Zheng LJ; Wang XX; Kong DC; Wang YF; Wang Y; Wu JY; Sun Y; Xu JJ
    J Am Chem Soc; 2024 Jan; 146(2):1305-1317. PubMed ID: 38169369
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Halder A; Ngo AT; Luo X; Wang HH; Wen JG; Abbasi P; Asadi M; Zhang C; Miller D; Zhang D; Lu J; Redfern PC; Lau KC; Amine R; Assary RS; Lee YJ; Salehi-Khojin A; Vajda S; Amine K; Curtiss LA
    J Phys Chem A; 2019 Nov; 123(46):10047-10056. PubMed ID: 31657929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compatible interface design of CoO-based Li-O2 battery cathodes with long-cycling stability.
    Shang C; Dong S; Hu P; Guan J; Xiao D; Chen X; Zhang L; Gu L; Cui G; Chen L
    Sci Rep; 2015 Feb; 5():8335. PubMed ID: 25720845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries.
    Johnson L; Li C; Liu Z; Chen Y; Freunberger SA; Ashok PC; Praveen BB; Dholakia K; Tarascon JM; Bruce PG
    Nat Chem; 2014 Dec; 6(12):1091-9. PubMed ID: 25411888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effect of Potassium Impurities Deliberately Introduced into Activated Carbon Cathodes on the Performance of Lithium-Oxygen Batteries.
    Zhai D; Lau KC; Wang HH; Wen J; Miller DJ; Kang F; Li B; Zavadil K; Curtiss LA
    ChemSusChem; 2015 Dec; 8(24):4235-41. PubMed ID: 26630086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potassium Superoxide: A Unique Alternative for Metal-Air Batteries.
    Xiao N; Ren X; McCulloch WD; Gourdin G; Wu Y
    Acc Chem Res; 2018 Sep; 51(9):2335-2343. PubMed ID: 30178665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic Evaluation of LixOy Formation on δ-MnO2 in Nonaqueous Li-Air Batteries.
    Liu Z; De Jesus LR; Banerjee S; Mukherjee PP
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23028-36. PubMed ID: 27532334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li-O2 Batteries.
    McCloskey BD; Speidel A; Scheffler R; Miller DC; Viswanathan V; Hummelshøj JS; Nørskov JK; Luntz AC
    J Phys Chem Lett; 2012 Apr; 3(8):997-1001. PubMed ID: 26286562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.