BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 26751170)

  • 1. A biomimetic DNA-based channel for the ligand-controlled transport of charged molecular cargo across a biological membrane.
    Burns JR; Seifert A; Fertig N; Howorka S
    Nat Nanotechnol; 2016 Feb; 11(2):152-6. PubMed ID: 26751170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Transport through a Biomimetic DNA Channel on Live Cell Membranes.
    Lv C; Gu X; Li H; Zhao Y; Yang D; Yu W; Han D; Li J; Tan W
    ACS Nano; 2020 Nov; 14(11):14616-14626. PubMed ID: 32897687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Temperature-Gated Nanovalve Self-Assembled from DNA to Control Molecular Transport across Membranes.
    Arnott PM; Howorka S
    ACS Nano; 2019 Mar; 13(3):3334-3340. PubMed ID: 30794375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionic selectivity of nystatin A1 confined in nanoporous track-etched polymer membrane.
    Balme S; Thiele D; Kraszewski S; Picaud F; Janot JM; Déjardin P
    IET Nanobiotechnol; 2014 Sep; 8(3):138-42. PubMed ID: 25082221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Light-Triggered Synthetic Nanopore for Controlling Molecular Transport Across Biological Membranes.
    Offenbartl-Stiegert D; Rottensteiner A; Dorey A; Howorka S
    Angew Chem Int Ed Engl; 2022 Dec; 61(52):e202210886. PubMed ID: 36318092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores.
    Guo W; Tian Y; Jiang L
    Acc Chem Res; 2013 Dec; 46(12):2834-46. PubMed ID: 23713693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Biomimetic DNA-Based Membrane Gate for Protein-Controlled Transport of Cytotoxic Drugs.
    Lanphere C; Arnott PM; Jones SF; Korlova K; Howorka S
    Angew Chem Weinheim Bergstr Ger; 2021 Jan; 133(4):1931-1936. PubMed ID: 38504763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Biomimetic DNA-Based Membrane Gate for Protein-Controlled Transport of Cytotoxic Drugs.
    Lanphere C; Arnott PM; Jones SF; Korlova K; Howorka S
    Angew Chem Int Ed Engl; 2021 Jan; 60(4):1903-1908. PubMed ID: 33231913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electric Field-Controlled Ion Transport In TiO2 Nanochannel.
    Li D; Jing W; Li S; Shen H; Xing W
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11294-300. PubMed ID: 25961963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanopore sensors: from hybrid to abiotic systems.
    Kocer A; Tauk L; Déjardin P
    Biosens Bioelectron; 2012; 38(1):1-10. PubMed ID: 22749726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanotechnological selection.
    Demming A
    Nanotechnology; 2013 Jan; 24(2):020201. PubMed ID: 23242125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A reversibly gated protein-transporting membrane channel made of DNA.
    Dey S; Dorey A; Abraham L; Xing Y; Zhang I; Zhang F; Howorka S; Yan H
    Nat Commun; 2022 Apr; 13(1):2271. PubMed ID: 35484117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineered Ionic Gates for Ion Conduction Based on Sodium and Potassium Activated Nanochannels.
    Liu Q; Xiao K; Wen L; Lu H; Liu Y; Kong XY; Xie G; Zhang Z; Bo Z; Jiang L
    J Am Chem Soc; 2015 Sep; 137(37):11976-83. PubMed ID: 26340444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing DNA-lipid membrane interactions with a lipopeptide nanopore.
    Bessonov A; Takemoto JY; Simmel FC
    ACS Nano; 2012 Apr; 6(4):3356-63. PubMed ID: 22424398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bis-triazolyl diguanosine derivatives as synthetic transmembrane ion channels.
    Kumar YP; Das RN; Schütte OM; Steinem C; Dash J
    Nat Protoc; 2016 Jun; 11(6):1039-56. PubMed ID: 27149327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Dynamics of Membrane-Spanning DNA Channels: Conductance Mechanism, Electro-Osmotic Transport, and Mechanical Gating.
    Yoo J; Aksimentiev A
    J Phys Chem Lett; 2015 Dec; 6(23):4680-7. PubMed ID: 26551518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA Nanotechnology for Building Sensors, Nanopores and Ion-Channels.
    Göpfrich K; Keyser UF
    Adv Exp Med Biol; 2019; 1174():331-370. PubMed ID: 31713205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA-modified polymer pores allow pH- and voltage-gated control of channel flux.
    Buchsbaum SF; Nguyen G; Howorka S; Siwy ZS
    J Am Chem Soc; 2014 Jul; 136(28):9902-5. PubMed ID: 24992159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal-Organic Framework Membrane Nanopores as Biomimetic Photoresponsive Ion Channels and Photodriven Ion Pumps.
    Jiang Y; Ma W; Qiao Y; Xue Y; Lu J; Gao J; Liu N; Wu F; Yu P; Jiang L; Mao L
    Angew Chem Int Ed Engl; 2020 Jul; 59(31):12795-12799. PubMed ID: 32343466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Triggered Assembly of a DNA-Based Membrane Channel.
    Lanphere C; Ciccone J; Dorey A; Hagleitner-Ertuğrul N; Knyazev D; Haider S; Howorka S
    J Am Chem Soc; 2022 Mar; 144(10):4333-4344. PubMed ID: 35253434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.