These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 26751449)

  • 21. Inertial Sensor-Based Gait Recognition: A Review.
    Sprager S; Juric MB
    Sensors (Basel); 2015 Sep; 15(9):22089-127. PubMed ID: 26340634
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A robust walking detection algorithm using a single foot-worn inertial sensor: validation in real-life settings.
    Prigent G; Aminian K; Cereatti A; Salis F; Bonci T; Scott K; Mazzà C; Alcock L; Del Din S; Gazit E; Hansen C; Paraschiv-Ionescu A;
    Med Biol Eng Comput; 2023 Sep; 61(9):2341-2352. PubMed ID: 37069465
    [TBL] [Abstract][Full Text] [Related]  

  • 23. IMU-Based Classification of Parkinson's Disease From Gait: A Sensitivity Analysis on Sensor Location and Feature Selection.
    Caramia C; Torricelli D; Schmid M; Munoz-Gonzalez A; Gonzalez-Vargas J; Grandas F; Pons JL
    IEEE J Biomed Health Inform; 2018 Nov; 22(6):1765-1774. PubMed ID: 30106745
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sensor Type, Axis, and Position-Based Fusion and Feature Selection for Multimodal Human Daily Activity Recognition in Wearable Body Sensor Networks.
    Badawi AA; Al-Kabbany A; Shaban HA
    J Healthc Eng; 2020; 2020():7914649. PubMed ID: 32587667
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimation of gait kinematics and kinetics from inertial sensor data using optimal control of musculoskeletal models.
    Dorschky E; Nitschke M; Seifer AK; van den Bogert AJ; Eskofier BM
    J Biomech; 2019 Oct; 95():109278. PubMed ID: 31472970
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gait initiation is impaired in subjects with Parkinson's disease in the OFF state: Evidence from the analysis of the anticipatory postural adjustments through wearable inertial sensors.
    Bonora G; Mancini M; Carpinella I; Chiari L; Horak FB; Ferrarin M
    Gait Posture; 2017 Jan; 51():218-221. PubMed ID: 27816900
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wearable Inertial Sensor System Towards Daily Human Kinematic Gait Analysis: Benchmarking Analysis to MVN BIOMECH.
    Figueiredo J; Carvalho SP; Vilas-Boas JP; Gonçalves LM; Moreno JC; Santos CP
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32290636
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computational intelligent gait-phase detection system to identify pathological gait.
    Senanayake CM; Senanayake SM
    IEEE Trans Inf Technol Biomed; 2010 Sep; 14(5):1173-9. PubMed ID: 20801745
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preliminary investigation of energy comparation between gyroscope, electromyography and VO2 wearable sensors.
    Williams G; Saiyi Li ; Pathirana PN
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4963-4966. PubMed ID: 28269382
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A symbol-based approach to gait analysis from acceleration signals: identification and detection of gait events and a new measure of gait symmetry.
    Sant'anna A; Wickström N
    IEEE Trans Inf Technol Biomed; 2010 Sep; 14(5):1180-7. PubMed ID: 20371410
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A scoping review on recent trends in wearable sensors to analyze gait in people with stroke: From sensor placement to validation against gold-standard equipment.
    Mathunny JJ; Karthik V; Devaraj A; Jacob J
    Proc Inst Mech Eng H; 2023 Mar; 237(3):309-326. PubMed ID: 36704959
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessment of Foot Trajectory for Human Gait Phase Detection Using Wireless Ultrasonic Sensor Network.
    Qi Y; Soh CB; Gunawan E; Low KS; Thomas R
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jan; 24(1):88-97. PubMed ID: 25769165
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three dimensional gait analysis using wearable acceleration and gyro sensors based on quaternion calculations.
    Tadano S; Takeda R; Miyagawa H
    Sensors (Basel); 2013 Jul; 13(7):9321-43. PubMed ID: 23877128
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessing Gait in Parkinson's Disease Using Wearable Motion Sensors: A Systematic Review.
    Brognara L; Palumbo P; Grimm B; Palmerini L
    Diseases; 2019 Feb; 7(1):. PubMed ID: 30764502
    [No Abstract]   [Full Text] [Related]  

  • 35. Real-time gait event detection using wearable sensors.
    Hanlon M; Anderson R
    Gait Posture; 2009 Nov; 30(4):523-7. PubMed ID: 19729307
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cost-Effective Wearable Indoor Localization and Motion Analysis via the Integration of UWB and IMU.
    Zhang H; Zhang Z; Gao N; Xiao Y; Meng Z; Li Z
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936175
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wearable Sensors System for an Improved Analysis of Freezing of Gait in Parkinson's Disease Using Electromyography and Inertial Signals.
    Mazzetta I; Zampogna A; Suppa A; Gumiero A; Pessione M; Irrera F
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30813411
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pedestrian Navigation Method Based on Machine Learning and Gait Feature Assistance.
    Zhou Z; Yang S; Ni Z; Qian W; Gu C; Cao Z
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32164287
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New method for assessment of gait variability based on wearable ground reaction force sensor.
    Liu T; Inoue Y; Shibata K
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2341-4. PubMed ID: 19163171
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Validity and repeatability of inertial measurement units for measuring gait parameters.
    Washabaugh EP; Kalyanaraman T; Adamczyk PG; Claflin ES; Krishnan C
    Gait Posture; 2017 Jun; 55():87-93. PubMed ID: 28433867
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.