These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 26751452)

  • 1. Recognition of Activities of Daily Living with Egocentric Vision: A Review.
    Nguyen TH; Nebel JC; Florez-Revuelta F
    Sensors (Basel); 2016 Jan; 16(1):. PubMed ID: 26751452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of Three State-of-the-Art Classifiers for Recognition of Activities of Daily Living from Smart Home Ambient Data.
    Nef T; Urwyler P; Büchler M; Tarnanas I; Stucki R; Cazzoli D; Müri R; Mosimann U
    Sensors (Basel); 2015 May; 15(5):11725-40. PubMed ID: 26007727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Egocentric daily activity recognition via multitask clustering.
    Yan Y; Ricci E; Liu G; Sebe N
    IEEE Trans Image Process; 2015 Oct; 24(10):2984-95. PubMed ID: 26067371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Multi-Modal Egocentric Activity Recognition Approach towards Video Domain Generalization.
    Papadakis A; Spyrou E
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A sequence-to-sequence model-based deep learning approach for recognizing activity of daily living for senior care.
    Zhu H; Chen H; Brown R
    J Biomed Inform; 2018 Aug; 84():148-158. PubMed ID: 30004019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Desktop Action Recognition From First-Person Point-of-View.
    Cai M; Lu F; Gao Y
    IEEE Trans Cybern; 2019 May; 49(5):1616-1628. PubMed ID: 29994596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fusing Object Information and Inertial Data for Activity Recognition.
    Diete A; Stuckenschmidt H
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31547630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emergency fall incidents detection in assisted living environments utilizing motion, sound, and visual perceptual components.
    Doukas CN; Maglogiannis I
    IEEE Trans Inf Technol Biomed; 2011 Mar; 15(2):277-89. PubMed ID: 21062686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction Detection in Egocentric Video: Toward a Novel Outcome Measure for Upper Extremity Function.
    Likitlersuang J; Zariffa J
    IEEE J Biomed Health Inform; 2018 Mar; 22(2):561-569. PubMed ID: 28114045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated Hand Prehension Assessment From Egocentric Video After Spinal Cord Injury.
    Zhao N; Zariffa J
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2864-2872. PubMed ID: 39102325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Attention Network for Egocentric Action Recognition.
    Lu M; Li ZN; Wang Y; Pan G
    IEEE Trans Image Process; 2019 Aug; 28(8):3703-3713. PubMed ID: 30835222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observing human-object interactions: using spatial and functional compatibility for recognition.
    Gupta A; Kembhavi A; Davis LS
    IEEE Trans Pattern Anal Mach Intell; 2009 Oct; 31(10):1775-89. PubMed ID: 19696449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Egocentric video: a new tool for capturing hand use of individuals with spinal cord injury at home.
    Likitlersuang J; Sumitro ER; Cao T; Visée RJ; Kalsi-Ryan S; Zariffa J
    J Neuroeng Rehabil; 2019 Jul; 16(1):83. PubMed ID: 31277682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3-D model-based multiple-object video tracking for treatment room supervision.
    Portela Sotelo MA; Desserée É; Moreau JM; Shariat B; Beuve M
    IEEE Trans Biomed Eng; 2012 Feb; 59(2):562-70. PubMed ID: 22127989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling and classifying human activities from trajectories using a class of space-varying parametric motion fields.
    Nascimento JC; Marques JS; Lemos JM
    IEEE Trans Image Process; 2013 May; 22(5):2066-80. PubMed ID: 23380856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic monocular system for human fall detection based on variations in silhouette area.
    Mirmahboub B; Samavi S; Karimi N; Shirani S
    IEEE Trans Biomed Eng; 2013 Feb; 60(2):427-36. PubMed ID: 23192468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Older adults' privacy considerations for vision based recognition methods of eldercare applications.
    Demiris G; Oliver DP; Giger J; Skubic M; Rantz M
    Technol Health Care; 2009; 17(1):41-8. PubMed ID: 19478404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.
    Gao L; Bourke AK; Nelson J
    Med Eng Phys; 2014 Jun; 36(6):779-85. PubMed ID: 24636448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Hierarchical Deep Fusion Framework for Egocentric Activity Recognition Using a Wearable Hybrid Sensor System.
    Yu H; Pan G; Pan M; Li C; Jia W; Zhang L; Sun M
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30696100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human daily activity recognition with sparse representation using wearable sensors.
    Zhang M; Sawchuk AA
    IEEE J Biomed Health Inform; 2013 May; 17(3):553-60. PubMed ID: 24592458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.