These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Discovery of evocalcet, a next-generation calcium-sensing receptor agonist for the treatment of hyperparathyroidism. Miyazaki H; Ikeda Y; Sakurai O; Miyake T; Tsubota R; Okabe J; Kuroda M; Hisada Y; Yanagida T; Yoneda H; Tsukumo Y; Tokunaga S; Kawata T; Ohashi R; Fukuda H; Kojima K; Kannami A; Kifuji T; Sato N; Idei A; Iguchi T; Sakairi T; Moritani Y Bioorg Med Chem Lett; 2018 Jun; 28(11):2055-2060. PubMed ID: 29724589 [TBL] [Abstract][Full Text] [Related]
23. New 1-arylindoles based serotonin 5-HT7 antagonists. Synthesis and binding evaluation studies. Sagnes C; Fournet G; Satala G; Bojarski AJ; Joseph B Eur J Med Chem; 2014 Mar; 75():159-68. PubMed ID: 24531229 [TBL] [Abstract][Full Text] [Related]
24. Clinical utility of calcimimetics targeting the extracellular calcium-sensing receptor (CaSR). Brown EM Biochem Pharmacol; 2010 Aug; 80(3):297-307. PubMed ID: 20382129 [TBL] [Abstract][Full Text] [Related]
25. Pharmacological and clinical properties of calcimimetics: calcium receptor activators that afford an innovative approach to controlling hyperparathyroidism. Nagano N Pharmacol Ther; 2006 Mar; 109(3):339-65. PubMed ID: 16102839 [TBL] [Abstract][Full Text] [Related]
26. New insights into the role of calcium-sensing receptor activation. Cozzolino M; Mazzaferro S; Messa P J Nephrol; 2011; 24 Suppl 18():S38-41. PubMed ID: 21623581 [TBL] [Abstract][Full Text] [Related]
27. Relationship between parathyroid calcium-sensing receptor expression and potency of the calcimimetic, cinacalcet, in suppressing parathyroid hormone secretion in an in vivo murine model of primary hyperparathyroidism. Kawata T; Imanishi Y; Kobayashi K; Kenko T; Wada M; Ishimura E; Miki T; Nagano N; Inaba M; Arnold A; Nishizawa Y Eur J Endocrinol; 2005 Oct; 153(4):587-94. PubMed ID: 16189180 [TBL] [Abstract][Full Text] [Related]
28. Further studies on ethyl 5-hydroxy-indole-3-carboxylate scaffold: design, synthesis and evaluation of 2-phenylthiomethyl-indole derivatives as efficient inhibitors of human 5-lipoxygenase. Peduto A; Bruno F; Dehm F; Krauth V; de Caprariis P; Weinigel C; Barz D; Massa A; De Rosa M; Werz O; Filosa R Eur J Med Chem; 2014 Jun; 81():492-8. PubMed ID: 24871899 [TBL] [Abstract][Full Text] [Related]
29. Structure-activity relationship of 5-chloro-2-methyl-3-(1,2,3,6-tetrahydropyridin-4-yl)-1H-indole analogues as 5-HT(6) receptor agonists. Mattsson C; Svensson P; Boettcher H; Sonesson C Eur J Med Chem; 2013 May; 63():578-88. PubMed ID: 23542166 [TBL] [Abstract][Full Text] [Related]
30. [Basic and clinical aspects of calcimimetics. Beneficial and adverse effects of calcimimetics on various organs]. Taniguchi M Clin Calcium; 2008 Jan; 18(1):45-50. PubMed ID: 18175871 [TBL] [Abstract][Full Text] [Related]
31. Treatment of secondary hyperparathyroidism in CKD patients with cinacalcet and/or vitamin D derivatives. Drüeke TB; Ritz E Clin J Am Soc Nephrol; 2009 Jan; 4(1):234-41. PubMed ID: 19056615 [TBL] [Abstract][Full Text] [Related]
32. Design, synthesis and pharmacological evaluation of 4-(piperazin-1-yl methyl)-N₁-arylsulfonyl indole derivatives as 5-HT₆ receptor ligands. Nirogi RV; Badange R; Kambhampati R; Chindhe A; Deshpande AD; Tiriveedhi V; Kandikere V; Muddana N; Abraham R; Khagga M Bioorg Med Chem Lett; 2012 Dec; 22(24):7431-5. PubMed ID: 23141912 [TBL] [Abstract][Full Text] [Related]
33. Impact of clinically relevant mutations on the pharmacoregulation and signaling bias of the calcium-sensing receptor by positive and negative allosteric modulators. Leach K; Wen A; Cook AE; Sexton PM; Conigrave AD; Christopoulos A Endocrinology; 2013 Mar; 154(3):1105-16. PubMed ID: 23372019 [TBL] [Abstract][Full Text] [Related]
34. Discovery of a calcimimetic with differential effects on parathyroid hormone and calcitonin secretion. Henley C; Yang Y; Davis J; Lu JY; Morony S; Fan W; Florio M; Sun B; Shatzen E; Pretorius JK; Richards WG; St Jean DJ; Fotsch C; Reagan JD J Pharmacol Exp Ther; 2011 Jun; 337(3):681-91. PubMed ID: 21422163 [TBL] [Abstract][Full Text] [Related]
35. 3-Aminomethyl derivatives of 4,11-dihydroxynaphtho[2,3-f]indole-5,10-dione for circumvention of anticancer drug resistance. Shchekotikhin AE; Shtil AA; Luzikov YN; Bobrysheva TV; Buyanov VN; Preobrazhenskaya MN Bioorg Med Chem; 2005 Mar; 13(6):2285-91. PubMed ID: 15727877 [TBL] [Abstract][Full Text] [Related]
36. Evidence for the presence of GPRC6A receptors in rat mesenteric arteries. Harno E; Edwards G; Geraghty AR; Ward DT; Dodd RH; Dauban P; Faure H; Ruat M; Weston AH Cell Calcium; 2008 Aug; 44(2):210-9. PubMed ID: 18221783 [TBL] [Abstract][Full Text] [Related]
37. Targeting GluN2B-containing N-Methyl-D-aspartate receptors: design, synthesis, and binding affinity evaluation of novel 3-substituted indoles. Buemi MR; De Luca L; Ferro S; Gitto R Arch Pharm (Weinheim); 2014 Aug; 347(8):533-9. PubMed ID: 24862313 [TBL] [Abstract][Full Text] [Related]
38. Calcium-sensing receptor-dependent activation of CREB phosphorylation in HEK293 cells and human parathyroid cells. Avlani VA; Ma W; Mun HC; Leach K; Delbridge L; Christopoulos A; Conigrave AD Am J Physiol Endocrinol Metab; 2013 May; 304(10):E1097-104. PubMed ID: 23531616 [TBL] [Abstract][Full Text] [Related]
39. Indol-3-ylcycloalkyl ketones: effects of N1 substituted indole side chain variations on CB(2) cannabinoid receptor activity. Frost JM; Dart MJ; Tietje KR; Garrison TR; Grayson GK; Daza AV; El-Kouhen OF; Yao BB; Hsieh GC; Pai M; Zhu CZ; Chandran P; Meyer MD J Med Chem; 2010 Jan; 53(1):295-315. PubMed ID: 19921781 [TBL] [Abstract][Full Text] [Related]
40. Design and synthesis of cyclic sulfonamides and sulfamates as new calcium sensing receptor agonists. Kiefer L; Gorojankina T; Dauban P; Faure H; Ruat M; Dodd RH Bioorg Med Chem Lett; 2010 Dec; 20(24):7483-7. PubMed ID: 21041081 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]