BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 26752228)

  • 1. In vivo articular cartilage deformation: noninvasive quantification of intratissue strain during joint contact in the human knee.
    Chan DD; Cai L; Butz KD; Trippel SB; Nauman EA; Neu CP
    Sci Rep; 2016 Jan; 6():19220. PubMed ID: 26752228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo tibiofemoral cartilage strain mapping under static mechanical loading using continuous GRASP-MRI.
    Menon RG; Zibetti MVW; Regatte RR
    J Magn Reson Imaging; 2020 Feb; 51(2):426-434. PubMed ID: 31282080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional MRI can detect changes in intratissue strains in a full thickness and critical sized ovine cartilage defect model.
    Chan DD; Cai L; Butz KD; Nauman EA; Dickerson DA; Jonkers I; Neu CP
    J Biomech; 2018 Jan; 66():18-25. PubMed ID: 29169631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An MRI-compatible loading device to assess knee joint cartilage deformation: Effect of preloading and inter-test repeatability.
    Wang H; Koff MF; Potter HG; Warren RF; Rodeo SA; Maher SA
    J Biomech; 2015 Sep; 48(12):2934-40. PubMed ID: 26303166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The short-term effects of running on the deformation of knee articular cartilage and its relationship to biomechanical loads at the knee.
    Boocock M; McNair P; Cicuttini F; Stuart A; Sinclair T
    Osteoarthritis Cartilage; 2009 Jul; 17(7):883-90. PubMed ID: 19246217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo human knee varus-valgus loading apparatus for analysis of MRI-based intratissue strain and relaxometry.
    Zhu H; Miller EY; Lee W; Wilson RL; Neu CP
    J Biomech; 2024 Jun; 171():112171. PubMed ID: 38861862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noninvasive dualMRI-based strains vary by depth and region in human osteoarthritic articular cartilage.
    Griebel AJ; Trippel SB; Neu CP
    Osteoarthritis Cartilage; 2013 Feb; 21(2):394-400. PubMed ID: 23186942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ deformation of cartilage in cyclically loaded tibiofemoral joints by displacement-encoded MRI.
    Chan DD; Neu CP; Hull ML
    Osteoarthritis Cartilage; 2009 Nov; 17(11):1461-8. PubMed ID: 19447213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Articular cartilage MR imaging and thickness mapping of a loaded knee joint before and after meniscectomy.
    Song Y; Greve JM; Carter DR; Koo S; Giori NJ
    Osteoarthritis Cartilage; 2006 Aug; 14(8):728-37. PubMed ID: 16533610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo morphometry and functional analysis of human articular cartilage with quantitative magnetic resonance imaging--from image to data, from data to theory.
    Eckstein F; Reiser M; Englmeier KH; Putz R
    Anat Embryol (Berl); 2001 Mar; 203(3):147-73. PubMed ID: 11303902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of normal gait on in vivo tibiofemoral cartilage strains.
    Lad NK; Liu B; Ganapathy PK; Utturkar GM; Sutter EG; Moorman CT; Garrett WE; Spritzer CE; DeFrate LE
    J Biomech; 2016 Sep; 49(13):2870-2876. PubMed ID: 27421206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo cartilage contact deformation of human ankle joints under full body weight.
    Wan L; de Asla RJ; Rubash HE; Li G
    J Orthop Res; 2008 Aug; 26(8):1081-9. PubMed ID: 18327792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient and microscale deformations and strains measured under exogenous loading by noninvasive magnetic resonance.
    Chan DD; Neu CP
    PLoS One; 2012; 7(3):e33463. PubMed ID: 22448245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of conventional standing knee radiographs and magnetic resonance imaging in assessing progression of tibiofemoral joint osteoarthritis.
    Cicuttini F; Hankin J; Jones G; Wluka A
    Osteoarthritis Cartilage; 2005 Aug; 13(8):722-7. PubMed ID: 15922634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneous three-dimensional strain fields during unconfined cyclic compression in bovine articular cartilage explants.
    Neu CP; Hull ML; Walton JH
    J Orthop Res; 2005 Nov; 23(6):1390-8. PubMed ID: 15972257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Knee cartilage of spinal cord-injured patients displays progressive thinning in the absence of normal joint loading and movement.
    Vanwanseele B; Eckstein F; Knecht H; Stüssi E; Spaepen A
    Arthritis Rheum; 2002 Aug; 46(8):2073-8. PubMed ID: 12209511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High frame rate deformation analysis of knee cartilage by spiral dualMRI and relaxation mapping.
    Lee W; Miller EY; Zhu H; Luetkemeyer CM; Schneider SE; Neu CP
    Magn Reson Med; 2023 Feb; 89(2):694-709. PubMed ID: 36300860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alterations in structure and properties of collagen network of osteoarthritic and repaired cartilage modify knee joint stresses.
    Mononen ME; Julkunen P; Töyräs J; Jurvelin JS; Kiviranta I; Korhonen RK
    Biomech Model Mechanobiol; 2011 Jun; 10(3):357-69. PubMed ID: 20628782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo tibiofemoral cartilage-to-cartilage contact area of females with medial osteoarthritis under acute loading using MRI.
    Shin CS; Souza RB; Kumar D; Link TM; Wyman BT; Majumdar S
    J Magn Reson Imaging; 2011 Dec; 34(6):1405-13. PubMed ID: 21953771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional assessment of strains around a full-thickness and critical sized articular cartilage defect under compressive loading using MRI.
    Zevenbergen L; Gsell W; Chan DD; Vander Sloten J; Himmelreich U; Neu CP; Jonkers I
    Osteoarthritis Cartilage; 2018 Dec; 26(12):1710-1721. PubMed ID: 30195045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.