BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 26752271)

  • 1. Tuning band inversion symmetry of buckled III-Bi sheets by halogenation.
    Freitas RR; de Brito Mota F; Rivelino R; de Castilho CM; Kakanakova-Georgieva A; Gueorguiev GK
    Nanotechnology; 2016 Feb; 27(5):055704. PubMed ID: 26752271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spin-orbit-induced gap modification in buckled honeycomb XBi and XBi₃ (X  =  B, Al, Ga, and In) sheets.
    Freitas RR; Mota Fde B; Rivelino R; de Castilho CM; Kakanakova-Georgieva A; Gueorguiev GK
    J Phys Condens Matter; 2015 Dec; 27(48):485306. PubMed ID: 26569356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of topological phase transition in X2-SiGe monolayers.
    Juarez-Mosqueda R; Ma Y; Heine T
    Phys Chem Chem Phys; 2016 Feb; 18(5):3669-74. PubMed ID: 26758453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of large-gap two-dimensional topological insulators consisting of bilayers of group III elements with Bi.
    Chuang FC; Yao LZ; Huang ZQ; Liu YT; Hsu CH; Das T; Lin H; Bansil A
    Nano Lett; 2014 May; 14(5):2505-8. PubMed ID: 24734779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-Dimensional Large Gap Topological Insulators with Tunable Rashba Spin-Orbit Coupling in Group-IV films.
    Zhang SJ; Ji WX; Zhang CW; Li P; Wang PJ
    Sci Rep; 2017 Apr; 7():45923. PubMed ID: 28368035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-band-gap non-Dirac quantum spin Hall states and strong Rashba effect in functionalized thallene films.
    Liu X; Li Z; Bao H; Yang Z
    Sci Rep; 2023 Sep; 13(1):15966. PubMed ID: 37749298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum spin Hall insulators and topological Rashba-splitting edge states in two-dimensional CX
    Wang SS; Sun W; Dong S
    Phys Chem Chem Phys; 2021 Jan; 23(3):2134-2140. PubMed ID: 33437975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First-principles prediction of a giant-gap quantum spin Hall insulator in Pb thin film.
    Zhao H; Ji WX; Zhang CW; Li P; Li F; Wang PJ; Zhang RW
    Phys Chem Chem Phys; 2016 Nov; 18(46):31862-31868. PubMed ID: 27841392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functionalized Thallium Antimony Films as Excellent Candidates for Large-Gap Quantum Spin Hall Insulator.
    Zhang RW; Zhang CW; Ji WX; Li SS; Yan SS; Li P; Wang PJ
    Sci Rep; 2016 Feb; 6():21351. PubMed ID: 26882865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New Family of Quantum Spin Hall Insulators in Two-dimensional Transition-Metal Halide with Large Nontrivial Band Gaps.
    Zhou L; Kou L; Sun Y; Felser C; Hu F; Shan G; Smith SC; Yan B; Frauenheim T
    Nano Lett; 2015 Dec; 15(12):7867-72. PubMed ID: 26524118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nontrivial topology and topological phase transition in two-dimensional monolayer Tl.
    Zhang J; Ji WX; Zhang CW; Li P; Wang PJ
    Phys Chem Chem Phys; 2018 Oct; 20(38):24790-24795. PubMed ID: 30229754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ideal two-dimensional quantum spin Hall insulators MgA
    Li J; Cheng X; Zhang H
    Phys Chem Chem Phys; 2024 Jan; 26(5):3815-3822. PubMed ID: 38168671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spin-Orbit Coupling Electronic Structures of Organic-Group Functionalized Sb and Bi Topological Monolayers.
    Gong Q; Zhang G
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Room Temperature Quantum Spin Hall Insulator in Ethynyl-Derivative Functionalized Stanene Films.
    Zhang RW; Zhang CW; Ji WX; Li SS; Yan SS; Hu SJ; Li P; Wang PJ; Li F
    Sci Rep; 2016 Jan; 6():18879. PubMed ID: 26728874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum spin Hall insulators in functionalized arsenene (AsX, X = F, OH and CH3) monolayers with pronounced light absorption.
    Zhao J; Li Y; Ma J
    Nanoscale; 2016 May; 8(18):9657-66. PubMed ID: 27101795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust two-dimensional topological insulators in methyl-functionalized bismuth, antimony, and lead bilayer films.
    Ma Y; Dai Y; Kou L; Frauenheim T; Heine T
    Nano Lett; 2015 Feb; 15(2):1083-9. PubMed ID: 25559879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning Dirac points by strain in MoX2 nanoribbons (X = S, Se, Te) with a 1T' structure.
    Sung HJ; Choe DH; Chang KJ
    Phys Chem Chem Phys; 2016 Jun; 18(24):16361-6. PubMed ID: 27257641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust 2D topological insulators in van der Waals heterostructures.
    Kou L; Wu SC; Felser C; Frauenheim T; Chen C; Yan B
    ACS Nano; 2014 Oct; 8(10):10448-54. PubMed ID: 25226453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of topological property in TlPBr
    Yuan M; Ji WX; Ren MJ; Li P; Li F; Zhang SF; Zhang CW; Wang PJ
    Phys Chem Chem Phys; 2018 Feb; 20(6):4308-4316. PubMed ID: 29367965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust Large Gap Two-Dimensional Topological Insulators in Hydrogenated III-V Buckled Honeycombs.
    Crisostomo CP; Yao LZ; Huang ZQ; Hsu CH; Chuang FC; Lin H; Albao MA; Bansil A
    Nano Lett; 2015 Oct; 15(10):6568-74. PubMed ID: 26390082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.