These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
358 related articles for article (PubMed ID: 26752341)
1. Invadopodia proteins, cortactin, N-WASP and WIP differentially promote local invasiveness in ameloblastoma. Siar CH; Rahman ZA; Tsujigiwa H; Mohamed Om Alblazi K; Nagatsuka H; Ng KH J Oral Pathol Med; 2016 Sep; 45(8):591-8. PubMed ID: 26752341 [TBL] [Abstract][Full Text] [Related]
2. Intersectin adaptor proteins are associated with actin-regulating protein WIP in invadopodia. Gryaznova T; Kropyvko S; Burdyniuk M; Gubar O; Kryklyva V; Tsyba L; Rynditch A Cell Signal; 2015 Jul; 27(7):1499-508. PubMed ID: 25797047 [TBL] [Abstract][Full Text] [Related]
3. WIP is necessary for matrix invasion by breast cancer cells. García E; Machesky LM; Jones GE; Antón IM Eur J Cell Biol; 2014 Oct; 93(10-12):413-23. PubMed ID: 25169059 [TBL] [Abstract][Full Text] [Related]
4. Invadopodia proteins, cortactin and membrane type I matrix metalloproteinase (MT1-MMP) are expressed in ameloblastoma. Pinheiro JJ; Nascimento CF; Freitas VM; de Siqueira AS; Junior SM; Jaeger RG Histopathology; 2011 Dec; 59(6):1266-9. PubMed ID: 22007770 [No Abstract] [Full Text] [Related]
5. WIP and WICH/WIRE co-ordinately control invadopodium formation and maturation in human breast cancer cell invasion. García E; Ragazzini C; Yu X; Cuesta-García E; Bernardino de la Serna J; Zech T; Sarrió D; Machesky LM; Antón IM Sci Rep; 2016 Mar; 6():23590. PubMed ID: 27009365 [TBL] [Abstract][Full Text] [Related]
6. Differential expression of transcription factors Snail, Slug, SIP1, and Twist in ameloblastoma. Siar CH; Ng KH J Oral Pathol Med; 2014 Jan; 43(1):45-52. PubMed ID: 23560539 [TBL] [Abstract][Full Text] [Related]
7. WIP regulates the stability and localization of WASP to podosomes in migrating dendritic cells. Chou HC; Antón IM; Holt MR; Curcio C; Lanzardo S; Worth A; Burns S; Thrasher AJ; Jones GE; Calle Y Curr Biol; 2006 Dec; 16(23):2337-44. PubMed ID: 17141616 [TBL] [Abstract][Full Text] [Related]
8. Multiple regulatory inputs converge on cortactin to control invadopodia biogenesis and extracellular matrix degradation. Ayala I; Baldassarre M; Giacchetti G; Caldieri G; Tetè S; Luini A; Buccione R J Cell Sci; 2008 Feb; 121(Pt 3):369-78. PubMed ID: 18198194 [TBL] [Abstract][Full Text] [Related]
9. Epithelial-to-mesenchymal transition in ameloblastoma: focus on morphologically evident mesenchymal phenotypic transition. Siar CH; Ng KH Pathology; 2019 Aug; 51(5):494-501. PubMed ID: 31262562 [TBL] [Abstract][Full Text] [Related]
10. WIP remodeling actin behind the scenes: how WIP reshapes immune and other functions. Noy E; Fried S; Matalon O; Barda-Saad M Int J Mol Sci; 2012; 13(6):7629-7647. PubMed ID: 22837718 [TBL] [Abstract][Full Text] [Related]
11. WIP: WASP-interacting proteins at invadopodia and podosomes. García E; Jones GE; Machesky LM; Antón IM Eur J Cell Biol; 2012; 91(11-12):869-77. PubMed ID: 22823953 [TBL] [Abstract][Full Text] [Related]
12. N-WASP and cortactin are involved in invadopodium-dependent chemotaxis to EGF in breast tumor cells. Desmarais V; Yamaguchi H; Oser M; Soon L; Mouneimne G; Sarmiento C; Eddy R; Condeelis J Cell Motil Cytoskeleton; 2009 Jun; 66(6):303-16. PubMed ID: 19373774 [TBL] [Abstract][Full Text] [Related]
13. Erk/Src phosphorylation of cortactin acts as a switch on-switch off mechanism that controls its ability to activate N-WASP. Martinez-Quiles N; Ho HY; Kirschner MW; Ramesh N; Geha RS Mol Cell Biol; 2004 Jun; 24(12):5269-80. PubMed ID: 15169891 [TBL] [Abstract][Full Text] [Related]
14. Cortactin interacts with WIP in regulating Arp2/3 activation and membrane protrusion. Kinley AW; Weed SA; Weaver AM; Karginov AV; Bissonette E; Cooper JA; Parsons JT Curr Biol; 2003 Mar; 13(5):384-93. PubMed ID: 12620186 [TBL] [Abstract][Full Text] [Related]
15. The cortactin-binding domain of WIP is essential for podosome formation and extracellular matrix degradation by murine dendritic cells. Bañón-Rodríguez I; Monypenny J; Ragazzini C; Franco A; Calle Y; Jones GE; Antón IM Eur J Cell Biol; 2011; 90(2-3):213-23. PubMed ID: 20952093 [TBL] [Abstract][Full Text] [Related]
16. Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. Yamaguchi H; Lorenz M; Kempiak S; Sarmiento C; Coniglio S; Symons M; Segall J; Eddy R; Miki H; Takenawa T; Condeelis J J Cell Biol; 2005 Jan; 168(3):441-52. PubMed ID: 15684033 [TBL] [Abstract][Full Text] [Related]
18. The rat homologue of Wiskott-Aldrich syndrome protein (WASP)-interacting protein (WIP) associates with actin filaments, recruits N-WASP from the nucleus, and mediates mobilization of actin from stress fibers in favor of filopodia formation. Vetterkind S; Miki H; Takenawa T; Klawitz I; Scheidtmann KH; Preuss U J Biol Chem; 2002 Jan; 277(1):87-95. PubMed ID: 11687573 [TBL] [Abstract][Full Text] [Related]
19. A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization. Moreau V; Frischknecht F; Reckmann I; Vincentelli R; Rabut G; Stewart D; Way M Nat Cell Biol; 2000 Jul; 2(7):441-8. PubMed ID: 10878810 [TBL] [Abstract][Full Text] [Related]
20. Phosphorylated cortactin recruits Vav2 guanine nucleotide exchange factor to activate Rac3 and promote invadopodial function in invasive breast cancer cells. Rosenberg BJ; Gil-Henn H; Mader CC; Halo T; Yin T; Condeelis J; Machida K; Wu YI; Koleske AJ Mol Biol Cell; 2017 May; 28(10):1347-1360. PubMed ID: 28356423 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]