These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 26752559)

  • 1. A novel 2D silicon nano-mold fabrication technique for linear nanochannels over a 4 inch diameter substrate.
    Yin Z; Qi L; Zou H; Sun L
    Sci Rep; 2016 Jan; 6():18921. PubMed ID: 26752559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of 2D silicon nano-mold by side etch lift-off method.
    Guo R; Qi L; Xu L; Liu L; Sun L; Yin Z; Li K; Zou H
    Nanotechnology; 2021 Apr; 32(28):. PubMed ID: 33823500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A low-cost and high-efficiency method for four-inch silicon nano-mold by proximity UV exposure.
    Sun L; Zou H; Sang S
    Nanotechnology; 2021 Nov; 33(7):. PubMed ID: 34507308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of nanochannels by anisotropic wet etching on silicon-on-insulator wafers and their application to DNA stretch.
    Kim SK; Cho H; Park HK; Kim JH; Chung BH
    J Nanosci Nanotechnol; 2010 Jan; 10(1):637-42. PubMed ID: 20352904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. UV-nanoimprint lithography: structure, materials and fabrication of flexible molds.
    Lan H; Liu H
    J Nanosci Nanotechnol; 2013 May; 13(5):3145-72. PubMed ID: 23858828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nano-Patterns of Photoresist Fabricated by Ultraviolet Lithography Technology.
    Cheng E; Tang S; Li C; Zou H; Wei Q
    J Nanosci Nanotechnol; 2020 Apr; 20(4):2508-2513. PubMed ID: 31492269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled Patterning of Vertical Silicon Structures Using Polymer Lithography and Wet Chemical Etching.
    Kim HJ; Lee SH; Lee J; Lee ES; Choi JH; Jung JY; Jeong JH; Choi DG
    J Nanosci Nanotechnol; 2015 Jun; 15(6):4522-9. PubMed ID: 26369075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wafer-scale fabrication of high-aspect ratio nanochannels based on edge-lithography technique.
    Xie Q; Zhou Q; Xie F; Sang J; Wang W; Zhang HA; Wu W; Li Z
    Biomicrofluidics; 2012 Mar; 6(1):16502-165028. PubMed ID: 22396721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined AFM nano-machining and reactive ion etching to fabricate high aspect ratio structures.
    Peng P; Shi T; Liao G; Tang Z
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7287-90. PubMed ID: 21137916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of silicon molds with multi-level, non-planar, micro- and nano-scale features.
    Azimi S; Dang ZY; Ansari K; Breese MB
    Nanotechnology; 2014 Sep; 25(37):375301. PubMed ID: 25148117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CMOS compatible fabrication of micro, nano convex silicon lens arrays by conformal chemical vapor deposition.
    Zuo H; Choi DY; Gai X; Luther-Davies B; Zhang B
    Opt Express; 2017 Feb; 25(4):3069-3076. PubMed ID: 28241523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic layer deposition on phase-shift lithography generated photoresist patterns for 1D nanochannel fabrication.
    Güder F; Yang Y; Krüger M; Stevens GB; Zacharias M
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3473-8. PubMed ID: 21047101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabricating nanostructures through a combination of nano-oxidation and wet etching on silicon wafers with different surface conditions.
    Huang JC
    Scanning; 2012; 34(4):264-70. PubMed ID: 22331692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of two dimensional polyethylene terephthalate nanofluidic chip using hot embossing and thermal bonding technique.
    Yin Z; Cheng E; Zou H; Chen L; Xu S
    Biomicrofluidics; 2014 Nov; 8(6):066503. PubMed ID: 25553203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous fabrication of very high aspect ratio positive nano- to milliscale structures.
    Chen LQ; Chan-Park MB; Zhang Q; Chen P; Li CM; Li S
    Small; 2009 May; 5(9):1043-50. PubMed ID: 19235805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nano-Gaps Fabricated by Thermal Evaporation and Stripping Techniques.
    Cheng E; Tang S; Zou H; Qiao G; Zhang Z
    J Nanosci Nanotechnol; 2021 Sep; 21(9):4852-4856. PubMed ID: 33691877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Periodic arrays of deep nanopores made in silicon with reactive ion etching and deep UV lithography.
    Woldering LA; Willem Tjerkstra R; Jansen HV; Setija ID; Vos WL
    Nanotechnology; 2008 Apr; 19(14):145304. PubMed ID: 21817758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding.
    Mao P; Han J
    Lab Chip; 2005 Aug; 5(8):837-44. PubMed ID: 16027934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The residual pattern of double thin-film over-etching for the fabrication of continuous patterns with dimensions varying from 50 nm to millimeters over a large area.
    Chen LQ; Chan-Park MB; Yang C; Zhang Q
    Nanotechnology; 2008 Apr; 19(15):155301. PubMed ID: 21825607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching.
    Morton KJ; Nieberg G; Bai S; Chou SY
    Nanotechnology; 2008 Aug; 19(34):345301. PubMed ID: 21730643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.