These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 26752597)

  • 1. Automated Reconstruction of Three-Dimensional Fish Motion, Forces, and Torques.
    Voesenek CJ; Pieters RP; van Leeuwen JL
    PLoS One; 2016; 11(1):e0146682. PubMed ID: 26752597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reorientation and propulsion in fast-starting zebrafish larvae: an inverse dynamics analysis.
    Voesenek CJ; Pieters RPM; Muijres FT; van Leeuwen JL
    J Exp Biol; 2019 Jul; 222(Pt 14):. PubMed ID: 31315925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Body dynamics and hydrodynamics of swimming fish larvae: a computational study.
    Li G; Müller UK; van Leeuwen JL; Liu H
    J Exp Biol; 2012 Nov; 215(Pt 22):4015-33. PubMed ID: 23100489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated visual tracking for studying the ontogeny of zebrafish swimming.
    Fontaine E; Lentink D; Kranenbarg S; Müller UK; van Leeuwen JL; Barr AH; Burdick JW
    J Exp Biol; 2008 Apr; 211(Pt 8):1305-16. PubMed ID: 18375855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated Planar Tracking the Waving Bodies of Multiple Zebrafish Swimming in Shallow Water.
    Wang SH; Cheng XE; Qian ZM; Liu Y; Chen YQ
    PLoS One; 2016; 11(4):e0154714. PubMed ID: 27128096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The kinematics of directional control in the fast start of zebrafish larvae.
    Nair A; Azatian G; McHenry MJ
    J Exp Biol; 2015 Dec; 218(Pt 24):3996-4004. PubMed ID: 26519511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental-numerical method for calculating bending moments in swimming fish shows that fish larvae control undulatory swimming with simple actuation.
    Voesenek CJ; Li G; Muijres FT; van Leeuwen JL
    PLoS Biol; 2020 Jul; 18(7):e3000462. PubMed ID: 32697779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How body torque and Strouhal number change with swimming speed and developmental stage in larval zebrafish.
    van Leeuwen JL; Voesenek CJ; Müller UK
    J R Soc Interface; 2015 Sep; 12(110):0479. PubMed ID: 26269230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Swimming of larval zebrafish: ontogeny of body waves and implications for locomotory development.
    Müller UK; van Leeuwen JL
    J Exp Biol; 2004 Feb; 207(Pt 5):853-68. PubMed ID: 14747416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A pressure-based force and torque prediction technique for the study of fish-like swimming.
    Lucas KN; Dabiri JO; Lauder GV
    PLoS One; 2017; 12(12):e0189225. PubMed ID: 29216264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Escaping Flatland: three-dimensional kinematics and hydrodynamics of median fins in fishes.
    Tytell ED; Standen EM; Lauder GV
    J Exp Biol; 2008 Jan; 211(Pt 2):187-95. PubMed ID: 18165246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow patterns of larval fish: undulatory swimming in the intermediate flow regime.
    Müller UK; van den Boogaart JG; van Leeuwen JL
    J Exp Biol; 2008 Jan; 211(Pt 2):196-205. PubMed ID: 18165247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional motion tracking reveals a diving component to visual and auditory escape swims in zebrafish larvae.
    Bishop BH; Spence-Chorman N; Gahtan E
    J Exp Biol; 2016 Dec; 219(Pt 24):3981-3987. PubMed ID: 27802145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Markerless analysis of front crawl swimming.
    Ceseracciu E; Sawacha Z; Fantozzi S; Cortesi M; Gatta G; Corazza S; Cobelli C
    J Biomech; 2011 Aug; 44(12):2236-42. PubMed ID: 21719017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Are fish less responsive to a flow stimulus when swimming?
    Feitl KE; Ngo V; McHenry MJ
    J Exp Biol; 2010 Sep; 213(Pt 18):3131-7. PubMed ID: 20802114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The calculation of a human lumped-mass model from acceleration and force-plate data.
    Shippen J
    Proc Inst Mech Eng H; 2002; 216(5):333-40. PubMed ID: 12365791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An effective and robust method for tracking multiple fish in video image based on fish head detection.
    Qian ZM; Wang SH; Cheng XE; Chen YQ
    BMC Bioinformatics; 2016 Jun; 17(1):251. PubMed ID: 27338122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow control by means of a traveling curvature wave in fishlike escape responses.
    Liu G; Yu YL; Tong BG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056312. PubMed ID: 22181503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional, automated, real-time video system for tracking limb motion in brain-machine interface studies.
    Peikon ID; Fitzsimmons NA; Lebedev MA; Nicolelis MA
    J Neurosci Methods; 2009 Jun; 180(2):224-33. PubMed ID: 19464514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D computational models explain muscle activation patterns and energetic functions of internal structures in fish swimming.
    Ming T; Jin B; Song J; Luo H; Du R; Ding Y
    PLoS Comput Biol; 2019 Sep; 15(9):e1006883. PubMed ID: 31487282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.