These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 26752618)
1. Integrating Hybrid Life Cycle Assessment with Multiobjective Optimization: A Modeling Framework. Yue D; Pandya S; You F Environ Sci Technol; 2016 Feb; 50(3):1501-9. PubMed ID: 26752618 [TBL] [Abstract][Full Text] [Related]
2. Total environmental impacts of biofuels from corn stover using a hybrid life cycle assessment model combining process life cycle assessment and economic input-output life cycle assessment. Liu C; Huang Y; Wang X; Tai Y; Liu L; Liu H Integr Environ Assess Manag; 2018 Jan; 14(1):139-149. PubMed ID: 28796442 [TBL] [Abstract][Full Text] [Related]
3. Environmental impacts of various biomass supply chains for the provision of raw wood in Bavaria, Germany, with focus on climate change. Klein D; Wolf C; Schulz C; Weber-Blaschke G Sci Total Environ; 2016 Jan; 539():45-60. PubMed ID: 26352646 [TBL] [Abstract][Full Text] [Related]
4. Life cycle assessment of bioethanol production from woodchips with modifications in the pretreatment process. Shadbahr J; Zhang Y; Khan F Appl Biochem Biotechnol; 2015 Jan; 175(2):1080-91. PubMed ID: 25367284 [TBL] [Abstract][Full Text] [Related]
5. Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: Challenges and perspectives. Singh A; Pant D; Korres NE; Nizami AS; Prasad S; Murphy JD Bioresour Technol; 2010 Jul; 101(13):5003-12. PubMed ID: 20015644 [TBL] [Abstract][Full Text] [Related]
6. Life cycle assessment of first-generation biofuels using a nitrogen crop model. Gallejones P; Pardo G; Aizpurua A; del Prado A Sci Total Environ; 2015 Feb; 505():1191-201. PubMed ID: 25461117 [TBL] [Abstract][Full Text] [Related]
7. Identification of 'carbon hot-spots' and quantification of GHG intensities in the biodiesel supply chain using hybrid LCA and structural path analysis. Acquaye AA; Wiedmann T; Feng K; Crawford RH; Barrett J; Kuylenstierna J; Duffy AP; Koh SC; McQueen-Mason S Environ Sci Technol; 2011 Mar; 45(6):2471-8. PubMed ID: 21319814 [TBL] [Abstract][Full Text] [Related]
8. Integrated supply chain design for commodity chemicals production via woody biomass fast pyrolysis and upgrading. Zhang Y; Hu G; Brown RC Bioresour Technol; 2014 Apr; 157():28-36. PubMed ID: 24530947 [TBL] [Abstract][Full Text] [Related]
9. Forest bioenergy or forest carbon? Assessing trade-offs in greenhouse gas mitigation with wood-based fuels. McKechnie J; Colombo S; Chen J; Mabee W; MacLean HL Environ Sci Technol; 2011 Jan; 45(2):789-95. PubMed ID: 21142063 [TBL] [Abstract][Full Text] [Related]
10. Environmental assessment of biofuel pathways in Ile de France based on ecosystem modeling. Gabrielle B; Gagnaire N; Massad RS; Dufossé K; Bessou C Bioresour Technol; 2014; 152():511-8. PubMed ID: 24280674 [TBL] [Abstract][Full Text] [Related]
11. A comprehensive approach to the design of ethanol supply chains including carbon trading effects. Giarola S; Shah N; Bezzo F Bioresour Technol; 2012 Mar; 107():175-85. PubMed ID: 22225607 [TBL] [Abstract][Full Text] [Related]
12. Sustainable feedstock for bioethanol production: Impact of spatial resolution on the design of a sustainable biomass supply-chain. Sharara MA; Sahoo K; Reddy AD; Kim S; Zhang X; Dale B; Jones CD; Izaurralde RC; Runge TM Bioresour Technol; 2020 Apr; 302():122896. PubMed ID: 32018088 [TBL] [Abstract][Full Text] [Related]
13. Environmental Multiobjective Optimization of the Use of Biomass Resources for Energy. Vadenbo C; Tonini D; Astrup TF Environ Sci Technol; 2017 Mar; 51(6):3575-3583. PubMed ID: 28212024 [TBL] [Abstract][Full Text] [Related]
14. Quantifying the environmental impact of an integrated human/industrial-natural system using life cycle assessment; a case study on a forest and wood processing chain. Schaubroeck T; Alvarenga RA; Verheyen K; Muys B; Dewulf J Environ Sci Technol; 2013; 47(23):13578-86. PubMed ID: 24195778 [TBL] [Abstract][Full Text] [Related]
15. Potential environmental impact of bioethanol production chain from fiber sorghum to be used in passenger cars. Forte A; Zucaro A; Fagnano M; Fierro A Sci Total Environ; 2017 Nov; 598():365-376. PubMed ID: 28448928 [TBL] [Abstract][Full Text] [Related]
16. Economic and life-cycle greenhouse gas optimization of microalgae-to-biofuels chains. Wu W; Lin KH; Chang JS Bioresour Technol; 2018 Nov; 267():550-559. PubMed ID: 30053713 [TBL] [Abstract][Full Text] [Related]
17. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Hill J; Nelson E; Tilman D; Polasky S; Tiffany D Proc Natl Acad Sci U S A; 2006 Jul; 103(30):11206-10. PubMed ID: 16837571 [TBL] [Abstract][Full Text] [Related]
18. Modeling cumulative effects in life cycle assessment: the case of fertilizer in wheat production contributing to the global warming potential. Laratte B; Guillaume B; Kim J; Birregah B Sci Total Environ; 2014 May; 481():588-95. PubMed ID: 24631622 [TBL] [Abstract][Full Text] [Related]
19. Comparative life-cycle assessments for biomass-to-ethanol production from different regional feedstocks. Kemppainen AJ; Shonnard DR Biotechnol Prog; 2005; 21(4):1075-84. PubMed ID: 16080686 [TBL] [Abstract][Full Text] [Related]
20. A Multiobjective Optimization Including Results of Life Cycle Assessment in Developing Biorenewables-Based Processes. Helmdach D; Yaseneva P; Heer PK; Schweidtmann AM; Lapkin AA ChemSusChem; 2017 Sep; 10(18):3632-3643. PubMed ID: 28714562 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]