These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 26753009)

  • 1. The activation strain model and molecular orbital theory.
    Wolters LP; Bickelhaupt FM
    Wiley Interdiscip Rev Comput Mol Sci; 2015 Jul; 5(4):324-343. PubMed ID: 26753009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The activation strain model and molecular orbital theory: understanding and designing chemical reactions.
    Fernández I; Bickelhaupt FM
    Chem Soc Rev; 2014 Jul; 43(14):4953-67. PubMed ID: 24699791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical reactivity from an activation strain perspective.
    Vermeeren P; Hamlin TA; Bickelhaupt FM
    Chem Commun (Camb); 2021 Jun; 57(48):5880-5896. PubMed ID: 34075969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The activation strain model of chemical reactivity.
    van Zeist WJ; Bickelhaupt FM
    Org Biomol Chem; 2010 Jul; 8(14):3118-27. PubMed ID: 20490400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Double group transfer reactions: role of activation strain and aromaticity in reaction barriers.
    Fernández I; Bickelhaupt FM; Cossío FP
    Chemistry; 2009 Dec; 15(47):13022-32. PubMed ID: 19852009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition-state energy and position along the reaction coordinate in an extended activation strain model.
    de Jong GT; Bickelhaupt FM
    Chemphyschem; 2007 Jun; 8(8):1170-81. PubMed ID: 17469091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding chemical reactivity using the activation strain model.
    Vermeeren P; van der Lubbe SCC; Fonseca Guerra C; Bickelhaupt FM; Hamlin TA
    Nat Protoc; 2020 Feb; 15(2):649-667. PubMed ID: 31925400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A theory for bioinorganic chemical reactivity of oxometal complexes and analogous oxidants: the exchange and orbital-selection rules.
    Usharani D; Janardanan D; Li C; Shaik S
    Acc Chem Res; 2013 Feb; 46(2):471-82. PubMed ID: 23210564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theory and practice of uncommon molecular electronic configurations.
    Gryn'ova G; Coote ML; Corminboeuf C
    Wiley Interdiscip Rev Comput Mol Sci; 2015; 5(6):440-459. PubMed ID: 27774112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analyzing Reaction Rates with the Distortion/Interaction-Activation Strain Model.
    Bickelhaupt FM; Houk KN
    Angew Chem Int Ed Engl; 2017 Aug; 56(34):10070-10086. PubMed ID: 28447369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of H-H, C-H, C-C and C-Cl Bonds by Pd and PdCl(-). Understanding Anion Assistance in C-X Bond Activation.
    Diefenbach A; de Jong GT; Bickelhaupt FM
    J Chem Theory Comput; 2005 Mar; 1(2):286-98. PubMed ID: 26641300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deeper Insight into the Diels-Alder Reaction through the Activation Strain Model.
    Fernández I; Bickelhaupt FM
    Chem Asian J; 2016 Dec; 11(23):3297-3304. PubMed ID: 27863108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Orbital Interactions and Activation Strain (Distortion Energies) on Reactivities in the Normal and Inverse Electron-Demand Cycloadditions of Strained and Unstrained Cycloalkenes.
    Levandowski BJ; Hamlin TA; Bickelhaupt FM; Houk KN
    J Org Chem; 2017 Aug; 82(16):8668-8675. PubMed ID: 28712288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics.
    Bazant MZ
    Acc Chem Res; 2013 May; 46(5):1144-60. PubMed ID: 23520980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Curly arrows, electron flow, and reaction mechanisms from the perspective of the bonding evolution theory.
    Andrés J; González-Navarrete P; Safont VS; Silvi B
    Phys Chem Chem Phys; 2017 Nov; 19(43):29031-29046. PubMed ID: 29077108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The nature of the primary photochemical events in rhodopsin and isorhodopsin.
    Birge RR; Einterz CM; Knapp HM; Murray LP
    Biophys J; 1988 Mar; 53(3):367-85. PubMed ID: 2964878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relative reactivity of peracids versus dioxiranes (DMDO and TFDO) in the epoxidation of alkenes. A combined experimental and theoretical analysis.
    Bach RD; Dmitrenko O; Adam W; Schambony S
    J Am Chem Soc; 2003 Jan; 125(4):924-34. PubMed ID: 12537490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unconventional Stereoerror Formation Mechanisms in Nonmetallocene Propene Polymerization Systems Revealed by DFT Calculations.
    Romano E; Budzelaar PHM; De Rosa C; Talarico G
    J Phys Chem A; 2022 Sep; 126(36):6203-6209. PubMed ID: 36054494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Valence shell charge concentration (VSCC) evolution: a tool to investigate the transformations within a VSCC throughout a chemical reaction.
    Cortés-Guzmán F; Gómez RM; Rocha-Rinza T; Sánchez-Obregón MA; Guevara-Vela JM
    J Phys Chem A; 2011 Nov; 115(45):12924-32. PubMed ID: 21923082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactivity descriptors in acid catalysis: acid strength, proton affinity and host-guest interactions.
    Deshlahra P; Iglesia E
    Chem Commun (Camb); 2020 Jul; 56(54):7371-7398. PubMed ID: 32568324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.