BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 26753613)

  • 1. Directed Dedifferentiation Using Partial Reprogramming Induces Invasive Phenotype in Melanoma Cells.
    Knappe N; Novak D; Weina K; Bernhardt M; Reith M; Larribere L; Hölzel M; Tüting T; Gebhardt C; Umansky V; Utikal J
    Stem Cells; 2016 Apr; 34(4):832-46. PubMed ID: 26753613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Melanoma Progression Inhibits Pluripotency and Differentiation of Melanoma-Derived iPSCs Produces Cells with Neural-like Mixed Dysplastic Phenotype.
    Castro-Pérez E; Rodríguez CI; Mikheil D; Siddique S; McCarthy A; Newton MA; Setaluri V
    Stem Cell Reports; 2019 Jul; 13(1):177-192. PubMed ID: 31231022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Context-Dependent Impact of RAS Oncogene Expression on Cellular Reprogramming to Pluripotency.
    Ferreirós A; Pedrosa P; Da Silva-Álvarez S; Triana-Martínez F; Vilas JM; Picallos-Rabina P; González P; Gómez M; Li H; García-Caballero T; González-Barcia M; Vidal A; Collado M
    Stem Cell Reports; 2019 May; 12(5):1099-1112. PubMed ID: 31056476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular Reprogramming-A Model for Melanoma Cellular Plasticity.
    Granados K; Poelchen J; Novak D; Utikal J
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33167306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The netrin-1 cue regulates somatic cell reprogramming to pluripotency].
    Mehlen P; Lavial F
    Med Sci (Paris); 2016 Mar; 32(3):241-4. PubMed ID: 27011240
    [No Abstract]   [Full Text] [Related]  

  • 6. Common Telomere Changes during In Vivo Reprogramming and Early Stages of Tumorigenesis.
    Marión RM; López de Silanes I; Mosteiro L; Gamache B; Abad M; Guerra C; Megías D; Serrano M; Blasco MA
    Stem Cell Reports; 2017 Feb; 8(2):460-475. PubMed ID: 28162998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translation reprogramming is an evolutionarily conserved driver of phenotypic plasticity and therapeutic resistance in melanoma.
    Falletta P; Sanchez-Del-Campo L; Chauhan J; Effern M; Kenyon A; Kershaw CJ; Siddaway R; Lisle R; Freter R; Daniels MJ; Lu X; Tüting T; Middleton M; Buffa FM; Willis AE; Pavitt G; Ronai ZA; Sauka-Spengler T; Hölzel M; Goding CR
    Genes Dev; 2017 Jan; 31(1):18-33. PubMed ID: 28096186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dedifferentiation of patient-derived glioblastoma multiforme cell lines results in a cancer stem cell-like state with mitogen-independent growth.
    Olmez I; Shen W; McDonald H; Ozpolat B
    J Cell Mol Med; 2015 Jun; 19(6):1262-72. PubMed ID: 25787115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concise review: dedifferentiation meets cancer development: proof of concept for epigenetic cancer.
    Yamada Y; Haga H; Yamada Y
    Stem Cells Transl Med; 2014 Oct; 3(10):1182-7. PubMed ID: 25122691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tumoral reprogramming: Plasticity takes a walk on the wild side.
    Campos-Sánchez E; Cobaleda C
    Biochim Biophys Acta; 2015 Apr; 1849(4):436-47. PubMed ID: 25038581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dualistic origin of human tumors.
    Liu J
    Semin Cancer Biol; 2018 Dec; 53():1-16. PubMed ID: 30040989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of pluripotency genes by a nanotube-mediated protein delivery system.
    Cho SJ; Choi HW; Cho J; Jung S; Seo HG; Do JT
    Mol Reprod Dev; 2013 Dec; 80(12):1000-8. PubMed ID: 24038603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The causal relationship between epigenetic abnormality and cancer development: in vivo reprogramming and its future application.
    Yamada Y; Yamada Y
    Proc Jpn Acad Ser B Phys Biol Sci; 2018; 94(6):235-247. PubMed ID: 29887568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state.
    Verfaillie A; Imrichova H; Atak ZK; Dewaele M; Rambow F; Hulselmans G; Christiaens V; Svetlichnyy D; Luciani F; Van den Mooter L; Claerhout S; Fiers M; Journe F; Ghanem GE; Herrmann C; Halder G; Marine JC; Aerts S
    Nat Commun; 2015 Apr; 6():6683. PubMed ID: 25865119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic reprogramming supports the invasive phenotype in malignant melanoma.
    Bettum IJ; Gorad SS; Barkovskaya A; Pettersen S; Moestue SA; Vasiliauskaite K; Tenstad E; Øyjord T; Risa Ø; Nygaard V; Mælandsmo GM; Prasmickaite L
    Cancer Lett; 2015 Sep; 366(1):71-83. PubMed ID: 26095603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A ubiquitin ligase, skeletrophin, is a negative regulator of melanoma invasion.
    Takeuchi T; Adachi Y; Sonobe H; Furihata M; Ohtsuki Y
    Oncogene; 2006 Nov; 25(53):7059-69. PubMed ID: 16715130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linking Pluripotency Reprogramming and Cancer.
    Iglesias JM; Gumuzio J; Martin AG
    Stem Cells Transl Med; 2017 Feb; 6(2):335-339. PubMed ID: 28191771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MicroRNA-365 inhibits growth, invasion and metastasis of malignant melanoma by targeting NRP1 expression.
    Bai J; Zhang Z; Li X; Liu H
    Cancer Biomark; 2015; 15(5):599-608. PubMed ID: 26406949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-gene transgenic mouse strains for reprogramming adult somatic cells.
    Carey BW; Markoulaki S; Beard C; Hanna J; Jaenisch R
    Nat Methods; 2010 Jan; 7(1):56-9. PubMed ID: 20010831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reprogramming cancer cells: a novel approach for cancer therapy or a tool for disease-modeling?
    Yilmazer A; de Lázaro I; Taheri H
    Cancer Lett; 2015 Dec; 369(1):1-8. PubMed ID: 26276716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.