BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 26753715)

  • 1. Alternating Current Cloud Point Extraction on a Microfluidic Chip: the Use of Ferrocenyl Surfactants.
    Usui Y; Sasaki N
    Anal Sci; 2016; 32(1):109-11. PubMed ID: 26753715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternating current cloud point extraction on a microchip: a comprehensive study.
    Sasaki N; Takemura A; Sato K
    Electrophoresis; 2012 Nov; 33(21):3159-65. PubMed ID: 23027025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alternating current cloud point extraction on a microchip: the effect of electrode geometry.
    Sasaki N; Maekawa C; Sato K
    Electrophoresis; 2015 Feb; 36(3):424-7. PubMed ID: 25224325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical generation of gradients in surfactant concentration across microfluidic channels.
    Liu X; Abbott NL
    Anal Chem; 2009 Jan; 81(2):772-81. PubMed ID: 19086794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid, highly efficient extraction and purification of membrane proteins using a microfluidic continuous-flow based aqueous two-phase system.
    Hu R; Feng X; Chen P; Fu M; Chen H; Guo L; Liu BF
    J Chromatogr A; 2011 Jan; 1218(1):171-7. PubMed ID: 21112057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alternating current cloud point extraction on a microchip for preconcentration of membrane-associated biomolecules.
    Sasaki N; Hosokawa K; Maeda M
    Lab Chip; 2009 May; 9(9):1168-70. PubMed ID: 19370232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preconcentration of proteins on microfluidic devices using porous silica membranes.
    Foote RS; Khandurina J; Jacobson SC; Ramsey JM
    Anal Chem; 2005 Jan; 77(1):57-63. PubMed ID: 15623278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superhydrophobic surfaces as an on-chip microfluidic toolkit for total droplet control.
    Draper MC; Crick CR; Orlickaite V; Turek VA; Parkin IP; Edel JB
    Anal Chem; 2013 Jun; 85(11):5405-10. PubMed ID: 23627493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A digital microfluidic method for in situ formation of porous polymer monoliths with application to solid-phase extraction.
    Yang H; Mudrik JM; Jebrail MJ; Wheeler AR
    Anal Chem; 2011 May; 83(10):3824-30. PubMed ID: 21524096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic Approaches for Protein Crystal Structure Analysis.
    Maeki M; Yamaguchi H; Tokeshi M; Miyazaki M
    Anal Sci; 2016; 32(1):3-9. PubMed ID: 26753699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methods for generation of spatial gradients in concentration of monomeric surfactants and micelles in microfluidic systems.
    Liu X; Graham MD; Abbott NL
    Langmuir; 2007 Sep; 23(19):9578-85. PubMed ID: 17705408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous separation of fungal spores in a microfluidic flow focusing device.
    Park BS; Kye HG; Kim TH; Lee JM; Ahrberg CD; Cho EM; Yang SI; Chung BG
    Analyst; 2019 Aug; 144(16):4962-4971. PubMed ID: 31322144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiscale variation-aware techniques for high-performance digital microfluidic lab-on-a-chip component placement.
    Liao C; Hu S
    IEEE Trans Nanobioscience; 2011 Mar; 10(1):51-8. PubMed ID: 21511570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hexafluoroisopropanol-induced coacervation in aqueous mixed systems of cationic and anionic surfactants for the extraction of sulfonamides in water samples.
    Chen D; Zhang P; Li Y; Mei Z; Xiao Y
    Anal Bioanal Chem; 2014 Sep; 406(24):6051-60. PubMed ID: 25069882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrophilic strips for preventing air bubble formation in a microfluidic chamber.
    Choi M; Na Y; Kim SJ
    Electrophoresis; 2015 Dec; 36(23):2896-901. PubMed ID: 26382942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of pressure-driven microfluidic networks using electric circuit analogy.
    Oh KW; Lee K; Ahn B; Furlani EP
    Lab Chip; 2012 Feb; 12(3):515-45. PubMed ID: 22179505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review: Aptamers in microfluidic chips.
    Xu Y; Yang X; Wang E
    Anal Chim Acta; 2010 Dec; 683(1):12-20. PubMed ID: 21094377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversible condensation of DNA using a redox-active surfactant.
    Hays ME; Jewell CM; Lynn DM; Abbott NL
    Langmuir; 2007 May; 23(10):5609-14. PubMed ID: 17428073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic-bead-based microfluidic system for ribonucleic acid extraction and reverse transcription processes.
    Liu CJ; Lien KY; Weng CY; Shin JW; Chang TY; Lee GB
    Biomed Microdevices; 2009 Apr; 11(2):339-50. PubMed ID: 19034667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microscale bioanalysis.
    Knutsson M; Timmerman P; Gomez FA
    Bioanalysis; 2016 May; 8(9):859-62. PubMed ID: 27109573
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.