BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 26753969)

  • 1. Comparative study between macrolide regulatory proteins MphR(A) and MphR(E) in ligand identification and DNA binding based on the rapid in vitro detection system.
    Cheng Y; Yang S; Jia M; Zhao L; Hou C; You X; Zhao J; Chen A
    Anal Bioanal Chem; 2016 Feb; 408(6):1623-31. PubMed ID: 26753969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into resistance mechanism of the macrolide biosensor protein MphR(A) binding to macrolide antibiotic erythromycin by molecular dynamics simulation.
    Feng T; Zhang Y; Ding JN; Fan S; Han JG
    J Comput Aided Mol Des; 2015 Dec; 29(12):1123-36. PubMed ID: 26564143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and function of the macrolide biosensor protein, MphR(A), with and without erythromycin.
    Zheng J; Sagar V; Smolinsky A; Bourke C; LaRonde-LeBlanc N; Cropp TA
    J Mol Biol; 2009 Apr; 387(5):1250-60. PubMed ID: 19265703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of transcription of the mph(A) gene for macrolide 2'-phosphotransferase I in Escherichia coli: characterization of the regulatory gene mphR(A).
    Noguchi N; Takada K; Katayama J; Emura A; Sasatsu M
    J Bacteriol; 2000 Sep; 182(18):5052-8. PubMed ID: 10960087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel macrolide resistance module carried by the IncP-1beta resistance plasmid pRSB111, isolated from a wastewater treatment plant.
    Szczepanowski R; Krahn I; Bohn N; Pühler A; Schlüter A
    Antimicrob Agents Chemother; 2007 Feb; 51(2):673-8. PubMed ID: 17101677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macrolide inactivation gene cluster mphA-mrx-mphR adjacent to a class 1 integron in Aeromonas hydrophila isolated from a diarrhoeic pig in Oklahoma.
    Poole TL; Callaway TR; Bischoff KM; Warnes CE; Nisbet DJ
    J Antimicrob Chemother; 2006 Jan; 57(1):31-8. PubMed ID: 16339607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photochemical control of bacterial signal processing using a light-activated erythromycin.
    Gardner L; Zou Y; Mara A; Cropp TA; Deiters A
    Mol Biosyst; 2011 Sep; 7(9):2554-7. PubMed ID: 21785768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The evolution of substrate discrimination in macrolide antibiotic resistance enzymes.
    Pawlowski AC; Stogios PJ; Koteva K; Skarina T; Evdokimova E; Savchenko A; Wright GD
    Nat Commun; 2018 Jan; 9(1):112. PubMed ID: 29317655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a novel macrolide efflux gene, mef(B), found linked to sul3 in porcine Escherichia coli.
    Liu J; Keelan P; Bennett PM; Enne VI
    J Antimicrob Chemother; 2009 Mar; 63(3):423-6. PubMed ID: 19131424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macrolide Biosensor Optimization through Cellular Substrate Sequestration.
    Miller CA; Ho JM; Parks SE; Bennett MR
    ACS Synth Biol; 2021 Feb; 10(2):258-264. PubMed ID: 33555859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence polarization method to characterize macrolide-ribosome interactions.
    Yan K; Hunt E; Berge J; May E; Copeland RA; Gontarek RR
    Antimicrob Agents Chemother; 2005 Aug; 49(8):3367-72. PubMed ID: 16048949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A general strategy for the production of difficult-to-express inducer-dependent bacterial repressor proteins in Escherichia coli.
    Christen EH; Karlsson M; Kämpf MM; Weber CC; Fussenegger M; Weber W
    Protein Expr Purif; 2009 Aug; 66(2):158-64. PubMed ID: 19324091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of Transcription Factor-Based Designer Macrolide Biosensors for Metabolic Engineering and Synthetic Biology.
    Kasey CM; Zerrad M; Li Y; Cropp TA; Williams GJ
    ACS Synth Biol; 2018 Jan; 7(1):227-239. PubMed ID: 28950701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and analysis of the PikD regulatory factor in the pikromycin biosynthetic pathway of Streptomyces venezuelae.
    Wilson DJ; Xue Y; Reynolds KA; Sherman DH
    J Bacteriol; 2001 Jun; 183(11):3468-75. PubMed ID: 11344155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enriching intracellular macrolides in Escherichia coli improved the sensitivity of bioluminescent sensing systems.
    Kim DG; Kim M; Oh MK
    Talanta; 2022 Nov; 249():123626. PubMed ID: 35696977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding site of the bridged macrolides in the Escherichia coli ribosome.
    Xiong L; Korkhin Y; Mankin AS
    Antimicrob Agents Chemother; 2005 Jan; 49(1):281-8. PubMed ID: 15616307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of macrolide antibiotic-binding Human_p8 protein.
    Morimura T; Hashiba M; Kameda H; Takami M; Takahama H; Ohshige M; Sugawara F
    J Antibiot (Tokyo); 2008 May; 61(5):291-6. PubMed ID: 18653994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding site of macrolide antibiotics on the ribosome: new resistance mutation identifies a specific interaction of ketolides with rRNA.
    Garza-Ramos G; Xiong L; Zhong P; Mankin A
    J Bacteriol; 2001 Dec; 183(23):6898-907. PubMed ID: 11698379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resistance phenotypes conferred by macrolide phosphotransferases.
    Chesneau O; Tsvetkova K; Courvalin P
    FEMS Microbiol Lett; 2007 Apr; 269(2):317-22. PubMed ID: 17302923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular insights into 14-membered macrolides using the MM-PBSA method.
    Yam WK; Wahab HA
    J Chem Inf Model; 2009 Jun; 49(6):1558-67. PubMed ID: 19469526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.