These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 26754332)

  • 1. Robust high-resolution imaging and quantitative force measurement with tuned-oscillator atomic force microscopy.
    Dagdeviren OE; Götzen J; Hölscher H; Altman EI; Schwarz UD
    Nanotechnology; 2016 Feb; 27(6):065703. PubMed ID: 26754332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Practical method to limit tip-sample contact stress and prevent wear in amplitude modulation atomic force microscopy.
    Vahdat V; Carpick RW
    ACS Nano; 2013 Nov; 7(11):9836-50. PubMed ID: 24131354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopy of the shear force interaction in scanning near-field optical microscopy.
    Hoppe S; Ctistis G; Paggel JJ; Fumagalli P
    Ultramicroscopy; 2005 Feb; 102(3):221-6. PubMed ID: 15639353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined low-temperature scanning tunneling/atomic force microscope for atomic resolution imaging and site-specific force spectroscopy.
    Albers BJ; Liebmann M; Schwendemann TC; Baykara MZ; Heyde M; Salmeron M; Altman EI; Schwarz UD
    Rev Sci Instrum; 2008 Mar; 79(3):033704. PubMed ID: 18377012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noncontact Atomic Force Microscopy: An Emerging Tool for Fundamental Catalysis Research.
    Altman EI; Baykara MZ; Schwarz UD
    Acc Chem Res; 2015 Sep; 48(9):2640-8. PubMed ID: 26301490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Submolecular Imaging by Noncontact Atomic Force Microscopy with an Oxygen Atom Rigidly Connected to a Metallic Probe.
    Mönig H; Hermoso DR; Díaz Arado O; Todorović M; Timmer A; Schüer S; Langewisch G; Pérez R; Fuchs H
    ACS Nano; 2016 Jan; 10(1):1201-9. PubMed ID: 26605698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanics of interaction and atomic-scale wear of amplitude modulation atomic force microscopy probes.
    Vahdat V; Grierson DS; Turner KT; Carpick RW
    ACS Nano; 2013 Apr; 7(4):3221-35. PubMed ID: 23506316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative atomic resolution force imaging on epitaxial graphene with reactive and nonreactive AFM probes.
    Boneschanscher MP; van der Lit J; Sun Z; Swart I; Liljeroth P; Vanmaekelbergh D
    ACS Nano; 2012 Nov; 6(11):10216-21. PubMed ID: 23039032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inverting amplitude and phase to reconstruct tip-sample interaction forces in tapping mode atomic force microscopy.
    Hu S; Raman A
    Nanotechnology; 2008 Sep; 19(37):375704. PubMed ID: 21832558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feedback based simultaneous correction of imaging artifacts due to geometrical and mechanical cross-talk and tip-sample stick in atomic force microscopy.
    Shegaonkar AC; Salapaka SM
    Rev Sci Instrum; 2007 Oct; 78(10):103706. PubMed ID: 17979427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A torsional resonance mode AFM for in-plane tip surface interactions.
    Huang L; Su C
    Ultramicroscopy; 2004 Aug; 100(3-4):277-85. PubMed ID: 15231320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution imaging of antibodies by tapping-mode atomic force microscopy: attractive and repulsive tip-sample interaction regimes.
    San Paulo A; García R
    Biophys J; 2000 Mar; 78(3):1599-605. PubMed ID: 10692344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling tip-sample interaction forces during a single tap for improved topography and mechanical property imaging of soft materials by AFM.
    Parlak Z; Hadizadeh R; Balantekin M; Levent Degertekin F
    Ultramicroscopy; 2009 Aug; 109(9):1121-5. PubMed ID: 19493622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A measurement of the hysteresis loop in force-spectroscopy curves using a tuning-fork atomic force microscope.
    Lange M; van Vörden D; Möller R
    Beilstein J Nanotechnol; 2012; 3():207-12. PubMed ID: 22496993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative atomic force microscopy with carbon monoxide terminated tips.
    Sun Z; Boneschanscher MP; Swart I; Vanmaekelbergh D; Liljeroth P
    Phys Rev Lett; 2011 Jan; 106(4):046104. PubMed ID: 21405341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning the instability in static mode atomic force spectroscopy as obtained in an AFM by applying an electric field between the tip and the substrate.
    Biswas S; Raychaudhuri AK; Sreeram PA; Dietzel D
    Ultramicroscopy; 2012 Nov; 122():19-25. PubMed ID: 22960002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FM-AFM constant height imaging and force curves: high resolution study of DNA-tip interactions.
    Cerreta A; Vobornik D; Di Santo G; Tobenas S; Alonso-Sarduy L; Adamcik J; Dietler G
    J Mol Recognit; 2012 Sep; 25(9):486-93. PubMed ID: 22899592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of drive frequency and set point amplitude on tapping forces in atomic force microscopy: simulation and experiment.
    Legleiter J
    Nanotechnology; 2009 Jun; 20(24):245703. PubMed ID: 19471079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution imaging of C60 molecules using tuning-fork-based non-contact atomic force microscopy.
    Pawlak R; Kawai S; Fremy S; Glatzel T; Meyer E
    J Phys Condens Matter; 2012 Feb; 24(8):084005. PubMed ID: 22310075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.