These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 26754426)

  • 1. Nitric oxide function in plant abiotic stress.
    Fancy NN; Bahlmann AK; Loake GJ
    Plant Cell Environ; 2017 Apr; 40(4):462-472. PubMed ID: 26754426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein S-nitrosylation under abiotic stress: Role and mechanism.
    Wang T; Hou X; Wei L; Deng Y; Zhao Z; Liang C; Liao W
    Plant Physiol Biochem; 2024 Feb; 207():108329. PubMed ID: 38184883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NO-mediated protein S-nitrosylation under salt stress: Role and mechanism.
    Wei L; Liao W; Zhong Y; Tian Y; Wei S; Liu Y
    Plant Sci; 2024 Jan; 338():111927. PubMed ID: 37984610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitric oxide function in plant biology: a redox cue in deconvolution.
    Yu M; Lamattina L; Spoel SH; Loake GJ
    New Phytol; 2014 Jun; 202(4):1142-1156. PubMed ID: 24611485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein S-nitrosylation in plant abiotic stresses.
    Zhang J; Liao W
    Funct Plant Biol; 2019 Jan; 47(1):1-10. PubMed ID: 31787138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Mechanisms of Nitric Oxide (NO) Signaling and Reactive Oxygen Species (ROS) Homeostasis during Abiotic Stresses in Plants.
    Wani KI; Naeem M; Castroverde CDM; Kalaji HM; Albaqami M; Aftab T
    Int J Mol Sci; 2021 Sep; 22(17):. PubMed ID: 34502565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric oxide in plants: an insight on redox activity and responses toward abiotic stress signaling.
    Khator K; Parihar S; Jasik J; Shekhawat GS
    Plant Signal Behav; 2024 Dec; 19(1):2298053. PubMed ID: 38190763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein S-nitrosylation in programmed cell death in plants.
    Huang D; Huo J; Zhang J; Wang C; Wang B; Fang H; Liao W
    Cell Mol Life Sci; 2019 May; 76(10):1877-1887. PubMed ID: 30783684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitric oxide, crosstalk with stress regulators and plant abiotic stress tolerance.
    Zhou X; Joshi S; Khare T; Patil S; Shang J; Kumar V
    Plant Cell Rep; 2021 Aug; 40(8):1395-1414. PubMed ID: 33974111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of nitric oxide in heavy metal stress in plants: Cross-talk with phytohormones and protein S-nitrosylation.
    Wei L; Zhang M; Wei S; Zhang J; Wang C; Liao W
    Environ Pollut; 2020 Apr; 259():113943. PubMed ID: 32023797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crosstalk between reactive oxygen species and nitric oxide in plants: Key role of S-nitrosoglutathione reductase.
    Lindermayr C
    Free Radic Biol Med; 2018 Jul; 122():110-115. PubMed ID: 29203326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sub-proteome S-nitrosylation analysis in Brassica juncea hints at the regulation of Brassicaceae specific as well as other vital metabolic pathway(s) by nitric oxide and suggests post-translational modifications cross-talk.
    Sehrawat A; Deswal R
    Nitric Oxide; 2014 Dec; 43():97-111. PubMed ID: 25175897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitric oxide and S-nitrosoglutathione function additively during plant immunity.
    Yun BW; Skelly MJ; Yin M; Yu M; Mun BG; Lee SU; Hussain A; Spoel SH; Loake GJ
    New Phytol; 2016 Jul; 211(2):516-26. PubMed ID: 26916092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melatonin-Nitric Oxide Crosstalk and Their Roles in the Redox Network in Plants.
    Zhu Y; Gao H; Lu M; Hao C; Pu Z; Guo M; Hou D; Chen LY; Huang X
    Int J Mol Sci; 2019 Dec; 20(24):. PubMed ID: 31818042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitric oxide-mediated integrative alterations in plant metabolism to confer abiotic stress tolerance, NO crosstalk with phytohormones and NO-mediated post translational modifications in modulating diverse plant stress.
    Sami F; Faizan M; Faraz A; Siddiqui H; Yusuf M; Hayat S
    Nitric Oxide; 2018 Feb; 73():22-38. PubMed ID: 29275195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide buffering and conditional nitric oxide release in stress response.
    Begara-Morales JC; Chaki M; Valderrama R; Sánchez-Calvo B; Mata-Pérez C; Padilla MN; Corpas FJ; Barroso JB
    J Exp Bot; 2018 Jun; 69(14):3425-3438. PubMed ID: 29506191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitric oxide molecular targets: reprogramming plant development upon stress.
    Sánchez-Vicente I; Fernández-Espinosa MG; Lorenzo O
    J Exp Bot; 2019 Aug; 70(17):4441-4460. PubMed ID: 31327004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GSNOR-mediated de-nitrosylation in the plant defence response.
    Malik SI; Hussain A; Yun BW; Spoel SH; Loake GJ
    Plant Sci; 2011 Nov; 181(5):540-4. PubMed ID: 21893250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide: An emerging warrior of plant physiology under abiotic stress.
    Saini S; Sharma P; Singh P; Kumar V; Yadav P; Sharma A
    Nitric Oxide; 2023 Nov; 140-141():58-76. PubMed ID: 37848156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulating the regulator: nitric oxide control of post-translational modifications.
    Gupta KJ; Kolbert Z; Durner J; Lindermayr C; Corpas FJ; Brouquisse R; Barroso JB; Umbreen S; Palma JM; Hancock JT; Petrivalsky M; Wendehenne D; Loake GJ
    New Phytol; 2020 Sep; 227(5):1319-1325. PubMed ID: 32339293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.