These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 26754485)

  • 1. High level of microsynteny and purifying selection affect the evolution of WRKY family in Gramineae.
    Jin J; Kong J; Qiu J; Zhu H; Peng Y; Jiang H
    Dev Genes Evol; 2016 Jan; 226(1):15-25. PubMed ID: 26754485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sugar Transporter Proteins (STPs) in Gramineae Crops: Comparative Analysis, Phylogeny, Evolution, and Expression Profiling.
    Kong W; An B; Zhang Y; Yang J; Li S; Sun T; Li Y
    Cells; 2019 Jun; 8(6):. PubMed ID: 31181814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide analysis of WRKY transcription factors in white pear (Pyrus bretschneideri) reveals evolution and patterns under drought stress.
    Huang X; Li K; Xu X; Yao Z; Jin C; Zhang S
    BMC Genomics; 2015 Dec; 16():1104. PubMed ID: 26704366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of the defensin-like gene family in grass genomes.
    Wu J; Jin X; Zhao Y; Dong Q; Jiang H; Ma Q
    J Genet; 2016 Mar; 95(1):53-62. PubMed ID: 27019432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide analysis suggests high level of microsynteny and purifying selection affect the evolution of
    Cao Y; Han Y; Meng D; Li D; Jin Q; Lin Y; Cai Y
    PeerJ; 2017; 5():e3400. PubMed ID: 28584725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide identification and comparative expression analysis reveal a rapid expansion and functional divergence of duplicated genes in the WRKY gene family of cabbage, Brassica oleracea var. capitata.
    Yao QY; Xia EH; Liu FH; Gao LZ
    Gene; 2015 Feb; 557(1):35-42. PubMed ID: 25481634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome duplication and gene loss affect the evolution of heat shock transcription factor genes in legumes.
    Lin Y; Cheng Y; Jin J; Jin X; Jiang H; Yan H; Cheng B
    PLoS One; 2014; 9(7):e102825. PubMed ID: 25047803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative genomic analysis of the WRKY III gene family in populus, grape, arabidopsis and rice.
    Wang Y; Feng L; Zhu Y; Li Y; Yan H; Xiang Y
    Biol Direct; 2015 Sep; 10():48. PubMed ID: 26350041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive evolution and divergent expression of heat stress transcription factors in grasses.
    Yang Z; Wang Y; Gao Y; Zhou Y; Zhang E; Hu Y; Yuan Y; Liang G; Xu C
    BMC Evol Biol; 2014 Jun; 14():147. PubMed ID: 24974883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide identification and comparative analysis of phosphate starvation-responsive transcription factors in maize and three other gramineous plants.
    Xu Y; Liu F; Han G; Cheng B
    Plant Cell Rep; 2018 May; 37(5):711-726. PubMed ID: 29396709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristic and evolution of HAT and HDAC genes in Gramineae genomes and their expression analysis under diverse stress in Oryza sativa.
    Hou J; Ren R; Xiao H; Chen Z; Yu J; Zhang H; Shi Q; Hou H; He S; Li L
    Planta; 2021 Feb; 253(3):72. PubMed ID: 33606144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recurrent sequence exchange between homeologous grass chromosomes.
    Wicker T; Wing RA; Schubert I
    Plant J; 2015 Nov; 84(4):747-59. PubMed ID: 26408412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Genome-wide identification and analysis of WRKY transcription factors in Medicago truncatula].
    Song H; Nan Z
    Yi Chuan; 2014 Feb; 36(2):152-68. PubMed ID: 24846944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide analysis of the WRKY gene family in physic nut (Jatropha curcas L.).
    Xiong W; Xu X; Zhang L; Wu P; Chen Y; Li M; Jiang H; Wu G
    Gene; 2013 Jul; 524(2):124-32. PubMed ID: 23644253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene Structures, Evolution and Transcriptional Profiling of the WRKY Gene Family in Castor Bean (Ricinus communis L.).
    Zou Z; Yang L; Wang D; Huang Q; Mo Y; Xie G
    PLoS One; 2016; 11(2):e0148243. PubMed ID: 26849139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide identification of Gramineae histone modification genes and their potential roles in regulating wheat and maize growth and stress responses.
    Zheng L; Ma S; Shen D; Fu H; Wang Y; Liu Y; Shah K; Yue C; Huang J
    BMC Plant Biol; 2021 Nov; 21(1):543. PubMed ID: 34800975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unusual tandem expansion and positive selection in subgroups of the plant GRAS transcription factor superfamily.
    Wu N; Zhu Y; Song W; Li Y; Yan Y; Hu Y
    BMC Plant Biol; 2014 Dec; 14():373. PubMed ID: 25524588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomewide analysis of MATE-type gene family in maize reveals microsynteny and their expression patterns under aluminum treatment.
    Zhu H; Wu J; Jiang Y; Jin J; Zhou W; Wang Y; Han G; Zhao Y; Cheng B
    J Genet; 2016 Sep; 95(3):691-704. PubMed ID: 27659341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The WRKY Transcription Factor Family in Citrus: Valuable and Useful Candidate Genes for Citrus Breeding.
    Ayadi M; Hanana M; Kharrat N; Merchaoui H; Marzoug RB; Lauvergeat V; Rebaï A; Mzid R
    Appl Biochem Biotechnol; 2016 Oct; 180(3):516-543. PubMed ID: 27193354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide characterization, evolutionary analysis of WRKY genes in Cucurbitaceae species and assessment of its roles in resisting to powdery mildew disease.
    Jiao Z; Sun J; Wang C; Dong Y; Xiao S; Gao X; Cao Q; Li L; Li W; Gao C
    PLoS One; 2018; 13(12):e0199851. PubMed ID: 30589839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.