BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 26755157)

  • 1. Analysis of TcdB Proteins within the Hypervirulent Clade 2 Reveals an Impact of RhoA Glucosylation on Clostridium difficile Proinflammatory Activities.
    Quesada-Gómez C; López-Ureña D; Chumbler N; Kroh HK; Castro-Peña C; Rodríguez C; Orozco-Aguilar J; González-Camacho S; Rucavado A; Guzmán-Verri C; Lawley TD; Lacy DB; Chaves-Olarte E
    Infect Immun; 2016 Jan; 84(3):856-65. PubMed ID: 26755157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis of BI/NAP1/027 hypervirulent strains reveals novel toxin B-encoding gene (tcdB) sequences.
    Stabler RA; Dawson LF; Phua LTH; Wren BW
    J Med Microbiol; 2008 Jun; 57(Pt 6):771-775. PubMed ID: 18480336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxin B Variants from
    López-Ureña D; Orozco-Aguilar J; Chaves-Madrigal Y; Ramírez-Mata A; Villalobos-Jimenez A; Ost S; Quesada-Gómez C; Rodríguez C; Papatheodorou P; Chaves-Olarte E
    Toxins (Basel); 2019 Jun; 11(6):. PubMed ID: 31212980
    [No Abstract]   [Full Text] [Related]  

  • 4. Human hypervirulent Clostridium difficile strains exhibit increased sporulation as well as robust toxin production.
    Merrigan M; Venugopal A; Mallozzi M; Roxas B; Viswanathan VK; Johnson S; Gerding DN; Vedantam G
    J Bacteriol; 2010 Oct; 192(19):4904-11. PubMed ID: 20675495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A MLST Clade 2 Clostridium difficile strain with a variant TcdB induces severe inflammatory and oxidative response associated with mucosal disruption.
    Costa CL; López-Ureña D; de Oliveira Assis T; Ribeiro RA; Silva RO; Rupnik M; Wilcox MH; de Carvalho AF; do Carmo AO; Dias AA; de Carvalho CB; Chaves-Olarte E; Rodríguez C; Quesada-Gómez C; de Castro Brito GA
    Anaerobe; 2016 Aug; 40():76-84. PubMed ID: 27311833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. R-Ras glucosylation and transient RhoA activation determine the cytopathic effect produced by toxin B variants from toxin A-negative strains of Clostridium difficile.
    Chaves-Olarte E; Freer E; Parra A; Guzmán-Verri C; Moreno E; Thelestam M
    J Biol Chem; 2003 Mar; 278(10):7956-63. PubMed ID: 12496290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Difference in the cytotoxic effects of toxin B from Clostridium difficile strain VPI 10463 and toxin B from variant Clostridium difficile strain 1470.
    Huelsenbeck J; Dreger S; Gerhard R; Barth H; Just I; Genth H
    Infect Immun; 2007 Feb; 75(2):801-9. PubMed ID: 17145947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The anti-sigma factor TcdC modulates hypervirulence in an epidemic BI/NAP1/027 clinical isolate of Clostridium difficile.
    Carter GP; Douce GR; Govind R; Howarth PM; Mackin KE; Spencer J; Buckley AM; Antunes A; Kotsanas D; Jenkin GA; Dupuy B; Rood JI; Lyras D
    PLoS Pathog; 2011 Oct; 7(10):e1002317. PubMed ID: 22022270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative biofilm-forming ability between
    Morais MLGDS; Santos MGC; Costa CL; Martins CS; Leitão RFC; de Melo Pacífico D; Quesada-Gómez C; Castelo Branco D; Ferreira EO; Brito GAC
    Front Cell Infect Microbiol; 2022; 12():1033698. PubMed ID: 36619751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clostridium difficile Toxin B causes epithelial cell necrosis through an autoprocessing-independent mechanism.
    Chumbler NM; Farrow MA; Lapierre LA; Franklin JL; Haslam DB; Goldenring JR; Lacy DB
    PLoS Pathog; 2012; 8(12):e1003072. PubMed ID: 23236283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Difference in F-actin depolymerization induced by toxin B from the Clostridium difficile strain VPI 10463 and toxin B from the variant Clostridium difficile serotype F strain 1470.
    May M; Wang T; Müller M; Genth H
    Toxins (Basel); 2013 Jan; 5(1):106-19. PubMed ID: 23344455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteogenomic analysis of the Clostridium difficile exoproteome reveals a correlation between phylogenetic distribution and virulence potential.
    Quesada-Gómez C; Murillo T; Arce G; Badilla-Lobo A; Castro-Peña C; Molina J; López-Ureña D; González-Camacho S; Lomonte B; Chacón-Díaz C; Rodríguez C; Chaves-Olarte E
    Anaerobe; 2020 Apr; 62():102151. PubMed ID: 31945474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence variation in tcdA and tcdB of Clostridium difficile: ST37 with truncated tcdA is a potential epidemic strain in China.
    Du P; Cao B; Wang J; Li W; Jia H; Zhang W; Lu J; Li Z; Yu H; Chen C; Cheng Y
    J Clin Microbiol; 2014 Sep; 52(9):3264-70. PubMed ID: 24958798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variations in TcdB activity and the hypervirulence of emerging strains of Clostridium difficile.
    Lanis JM; Barua S; Ballard JD
    PLoS Pathog; 2010 Aug; 6(8):e1001061. PubMed ID: 20808849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clostridium difficile 027/BI/NAP1 encodes a hypertoxic and antigenically variable form of TcdB.
    Lanis JM; Heinlen LD; James JA; Ballard JD
    PLoS Pathog; 2013; 9(8):e1003523. PubMed ID: 23935501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lack of association between clinical outcome of Clostridium difficile infections, strain type, and virulence-associated phenotypes.
    Sirard S; Valiquette L; Fortier LC
    J Clin Microbiol; 2011 Dec; 49(12):4040-6. PubMed ID: 21956985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular analysis of the pathogenicity locus and polymorphism in the putative negative regulator of toxin production (TcdC) among Clostridium difficile clinical isolates.
    Spigaglia P; Mastrantonio P
    J Clin Microbiol; 2002 Sep; 40(9):3470-5. PubMed ID: 12202595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emergence of a ribotype 244 strain of Clostridium difficile associated with severe disease and related to the epidemic ribotype 027 strain.
    Lim SK; Stuart RL; Mackin KE; Carter GP; Kotsanas D; Francis MJ; Easton M; Dimovski K; Elliott B; Riley TV; Hogg G; Paul E; Korman TM; Seemann T; Stinear TP; Lyras D; Jenkin GA
    Clin Infect Dis; 2014 Jun; 58(12):1723-30. PubMed ID: 24704722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enteric glial cells are susceptible to Clostridium difficile toxin B.
    Fettucciari K; Ponsini P; Gioè D; Macchioni L; Palumbo C; Antonelli E; Coaccioli S; Villanacci V; Corazzi L; Marconi P; Bassotti G
    Cell Mol Life Sci; 2017 Apr; 74(8):1527-1551. PubMed ID: 27891552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epidemic ribotypes of Clostridium (now Clostridioides) difficile are likely to be more virulent than non-epidemic ribotypes in animal models.
    Vitucci JC; Pulse M; Tabor-Simecka L; Simecka J
    BMC Microbiol; 2020 Feb; 20(1):27. PubMed ID: 32024477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.