These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 26755166)
1. APN1 is a functional receptor of Cry1Ac but not Cry2Ab in Helicoverpa zea. Wei J; Zhang M; Liang G; Wu K; Guo Y; Ni X; Li X Sci Rep; 2016 Jan; 6():19179. PubMed ID: 26755166 [TBL] [Abstract][Full Text] [Related]
2. Alkaline phosphatase 2 is a functional receptor of Cry1Ac but not Cry2Ab in Helicoverpa zea. Wei J; Zhang M; Liang G; Li X Insect Mol Biol; 2019 Jun; 28(3):372-379. PubMed ID: 30474197 [TBL] [Abstract][Full Text] [Related]
3. Cytotoxicity and binding profiles of activated Cry1Ac and Cry2Ab to three insect cell lines. Wei J; Liang G; Wu K; Gu S; Guo Y; Ni X; Li X Insect Sci; 2018 Aug; 25(4):655-666. PubMed ID: 28247982 [TBL] [Abstract][Full Text] [Related]
5. Aminopeptidase N5 (APN5) as a Putative Functional Receptor of Cry1Ac Toxin in the Larvae of Athetis lepigone. Wang LY; Gu SH; Nangong ZY; Song P; Wang QY Curr Microbiol; 2017 Apr; 74(4):455-459. PubMed ID: 28224224 [TBL] [Abstract][Full Text] [Related]
6. Antisera-mediated in vivo reduction of Cry1Ac toxicity in Helicoverpa armigera. Liu C; Gao Y; Ning C; Wu K; Oppert B; Guo Y J Insect Physiol; 2010 Jul; 56(7):718-24. PubMed ID: 20035762 [TBL] [Abstract][Full Text] [Related]
7. PxAPN5 serves as a functional receptor of Cry2Ab in Plutella xylostella (L.) and its binding domain analysis. Pan ZZ; Xu L; Liu B; Zhang J; Chen Z; Chen QX; Zhu YJ Int J Biol Macromol; 2017 Dec; 105(Pt 1):516-521. PubMed ID: 28720548 [TBL] [Abstract][Full Text] [Related]
8. Resistance to Bacillus thuringiensis Toxin Cry2Ab in Trichoplusia ni Is Conferred by a Novel Genetic Mechanism. Song X; Kain W; Cassidy D; Wang P Appl Environ Microbiol; 2015 Aug; 81(15):5184-95. PubMed ID: 26025894 [TBL] [Abstract][Full Text] [Related]
9. Reduction of Bacillus thuringiensis Cry1Ac toxicity against Helicoverpa armigera by a soluble toxin-binding cadherin fragment. Liu C; Wu K; Wu Y; Gao Y; Ning C; Oppert B J Insect Physiol; 2009 Aug; 55(8):686-93. PubMed ID: 19446559 [TBL] [Abstract][Full Text] [Related]
10. Mutation of an aminopeptidase N gene is associated with Helicoverpa armigera resistance to Bacillus thuringiensis Cry1Ac toxin. Zhang S; Cheng H; Gao Y; Wang G; Liang G; Wu K Insect Biochem Mol Biol; 2009 Jul; 39(7):421-9. PubMed ID: 19376227 [TBL] [Abstract][Full Text] [Related]
11. Cloning and complete sequence characterization of two gypsy moth aminopeptidase-N cDNAs, including the receptor for Bacillus thuringiensis Cry1Ac toxin. Garner KJ; Hiremath S; Lehtoma K; Valaitis AP Insect Biochem Mol Biol; 1999 Jun; 29(6):527-35. PubMed ID: 10406091 [TBL] [Abstract][Full Text] [Related]
12. Characterization of a Cry1Ac toxin-binding alkaline phosphatase in the midgut from Helicoverpa armigera (Hübner) larvae. Ning C; Wu K; Liu C; Gao Y; Jurat-Fuentes JL; Gao X J Insect Physiol; 2010 Jun; 56(6):666-72. PubMed ID: 20170658 [TBL] [Abstract][Full Text] [Related]
13. Influence of oxalic and malic acids in chickpea leaf exudates on the biological activity of CryIAc towards Helicoverpa armigera. Devi VS; Sharma HC; Rao PA J Insect Physiol; 2013 Apr; 59(4):394-9. PubMed ID: 23391855 [TBL] [Abstract][Full Text] [Related]
14. Variation in susceptibility of Helicoverpa armigera (Hübner) and Helicoverpa punctigera (Wallengren) (Lepidoptera: Noctuidae) in Australia to two Bacillus thuringiensis toxins. Bird LJ; Akhurst RJ J Invertebr Pathol; 2007 Feb; 94(2):84-94. PubMed ID: 17049552 [TBL] [Abstract][Full Text] [Related]
15. Expression of recombinant and mosaic Cry1Ac receptors from Helicoverpa armigera and their influences on the cytotoxicity of activated Cry1Ac to Spodoptera litura Sl-HP cells. Xu P; Islam M; Xiao Y; He F; Li Y; Peng J; Hong H; Liu C; Liu K Cytotechnology; 2016 May; 68(3):481-96. PubMed ID: 25412589 [TBL] [Abstract][Full Text] [Related]
17. Cloning and characterization of the Cry1Ac-binding alkaline phosphatase (HvALP) from Heliothis virescens. Perera OP; Willis JD; Adang MJ; Jurat-Fuentes JL Insect Biochem Mol Biol; 2009 Apr; 39(4):294-302. PubMed ID: 19552892 [TBL] [Abstract][Full Text] [Related]
18. Enhancing Cry1Ac toxicity by expression of the Helicoverpa armigera cadherin fragment in Bacillus thuringiensis. Peng D; Xu X; Ruan L; Yu Z; Sun M Res Microbiol; 2010 Jun; 161(5):383-9. PubMed ID: 20438837 [TBL] [Abstract][Full Text] [Related]
19. Binding of Bacillus thuringiensis toxin Cry1Ac to multiple sites of cadherin in pink bollworm. Fabrick JA; Tabashnik BE Insect Biochem Mol Biol; 2007 Feb; 37(2):97-106. PubMed ID: 17244539 [TBL] [Abstract][Full Text] [Related]
20. Cadherin is involved in the action of Bacillus thuringiensis toxins Cry1Ac and Cry2Aa in the beet armyworm, Spodoptera exigua. Qiu L; Hou L; Zhang B; Liu L; Li B; Deng P; Ma W; Wang X; Fabrick JA; Chen L; Lei C J Invertebr Pathol; 2015 May; 127():47-53. PubMed ID: 25754522 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]