These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 26755197)

  • 1. BayesFlow: latent modeling of flow cytometry cell populations.
    Johnsson K; Wallin J; Fontes M
    BMC Bioinformatics; 2016 Jan; 17():25. PubMed ID: 26755197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of inter-sample variation in flow cytometric data with the joint clustering and matching procedure.
    Lee SX; McLachlan GJ; Pyne S
    Cytometry A; 2016 Jan; 89(1):30-43. PubMed ID: 26492316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping cell populations in flow cytometry data for cross-sample comparison using the Friedman-Rafsky test statistic as a distance measure.
    Hsiao C; Liu M; Stanton R; McGee M; Qian Y; Scheuermann RH
    Cytometry A; 2016 Jan; 89(1):71-88. PubMed ID: 26274018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing transformations for automated, high throughput analysis of flow cytometry data.
    Finak G; Perez JM; Weng A; Gottardo R
    BMC Bioinformatics; 2010 Nov; 11():546. PubMed ID: 21050468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. gEM/GANN: A multivariate computational strategy for auto-characterizing relationships between cellular and clinical phenotypes and predicting disease progression time using high-dimensional flow cytometry data.
    Tong DL; Ball GR; Pockley AG
    Cytometry A; 2015 Jul; 87(7):616-23. PubMed ID: 25572884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Per-channel basis normalization methods for flow cytometry data.
    Hahne F; Khodabakhshi AH; Bashashati A; Wong CJ; Gascoyne RD; Weng AP; Seyfert-Margolis V; Bourcier K; Asare A; Lumley T; Gentleman R; Brinkman RR
    Cytometry A; 2010 Feb; 77(2):121-31. PubMed ID: 19899135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. OpenCyto: an open source infrastructure for scalable, robust, reproducible, and automated, end-to-end flow cytometry data analysis.
    Finak G; Frelinger J; Jiang W; Newell EW; Ramey J; Davis MM; Kalams SA; De Rosa SC; Gottardo R
    PLoS Comput Biol; 2014 Aug; 10(8):e1003806. PubMed ID: 25167361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DAFi: A directed recursive data filtering and clustering approach for improving and interpreting data clustering identification of cell populations from polychromatic flow cytometry data.
    Lee AJ; Chang I; Burel JG; Lindestam Arlehamn CS; Mandava A; Weiskopf D; Peters B; Sette A; Scheuermann RH; Qian Y
    Cytometry A; 2018 Jun; 93(6):597-610. PubMed ID: 29665244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated flow cytometric analysis across large numbers of samples and cell types.
    Chen X; Hasan M; Libri V; Urrutia A; Beitz B; Rouilly V; Duffy D; Patin É; Chalmond B; Rogge L; Quintana-Murci L; Albert ML; Schwikowski B;
    Clin Immunol; 2015 Apr; 157(2):249-60. PubMed ID: 25576660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. optimalFlow: optimal transport approach to flow cytometry gating and population matching.
    Del Barrio E; Inouzhe H; Loubes JM; Matrán C; Mayo-Íscar A
    BMC Bioinformatics; 2020 Oct; 21(1):479. PubMed ID: 33109072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Erratum to: BayesFlow: latent modeling of flow cytometry cell populations.
    Johnsson K; Wallin J; Fontes M
    BMC Bioinformatics; 2016 Mar; 17():149. PubMed ID: 27036556
    [No Abstract]   [Full Text] [Related]  

  • 12. Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data.
    Weber LM; Robinson MD
    Cytometry A; 2016 Dec; 89(12):1084-1096. PubMed ID: 27992111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BayesFlow: Learning Complex Stochastic Models With Invertible Neural Networks.
    Radev ST; Mertens UK; Voss A; Ardizzone L; Kothe U
    IEEE Trans Neural Netw Learn Syst; 2022 Apr; 33(4):1452-1466. PubMed ID: 33338021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A computational framework to emulate the human perspective in flow cytometric data analysis.
    Ray S; Pyne S
    PLoS One; 2012; 7(5):e35693. PubMed ID: 22563466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. What is a "unimodal" cell population? Using statistical tests as criteria for unimodality in automated gating and quality control.
    Johnsson K; Linderoth M; Fontes M
    Cytometry A; 2017 Sep; 91(9):908-916. PubMed ID: 28759711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leukoflow: multiparameter extended white blood cell differentiation for routine analysis by flow cytometry.
    van de Geijn GJ; van Rees V; van Pul-Bom N; Birnie E; Janssen H; Pegels H; Beunis M; Njo T
    Cytometry A; 2011 Sep; 79(9):694-706. PubMed ID: 21786418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational prediction of manually gated rare cells in flow cytometry data.
    Qiu P
    Cytometry A; 2015 Jul; 87(7):594-602. PubMed ID: 25755118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated gating of flow cytometry data via robust model-based clustering.
    Lo K; Brinkman RR; Gottardo R
    Cytometry A; 2008 Apr; 73(4):321-32. PubMed ID: 18307272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatically generate two-dimensional gating hierarchy from clustered cytometry data.
    Yang X; Qiu P
    Cytometry A; 2018 Oct; 93(10):1039-1050. PubMed ID: 30176185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A biology-driven deep generative model for cell-type annotation in cytometry.
    Blampey Q; Bercovici N; Dutertre CA; Pic I; Ribeiro JM; André F; Cournède PH
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37497716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.