These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 26755605)

  • 1. Decanalization of wing development accompanied the evolution of large wings in high-altitude Drosophila.
    Lack JB; Monette MJ; Johanning EJ; Sprengelmeyer QD; Pool JE
    Proc Natl Acad Sci U S A; 2016 Jan; 113(4):1014-9. PubMed ID: 26755605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directional selection reduces developmental canalization against genetic and environmental perturbations in Drosophila wings.
    Groth BR; Huang Y; Monette MJ; Pool JE
    Evolution; 2018 Jul; ():. PubMed ID: 29985527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic and environmental canalization are not associated among altitudinally varying populations of Drosophila melanogaster.
    Pesevski M; Dworkin I
    Evolution; 2020 Aug; 74(8):1755-1771. PubMed ID: 32562566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental time, body size and wing loading in Drosophila buzzatii from lowland and highland populations in Argentina.
    Norry FM; Bubliy OA; Loeschcke V
    Hereditas; 2001; 135(1):35-40. PubMed ID: 12035612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drosophila wing modularity revisited through a quantitative genetic approach.
    Muñoz-Muñoz F; Carreira VP; Martínez-Abadías N; Ortiz V; González-José R; Soto IM
    Evolution; 2016 Jul; 70(7):1530-41. PubMed ID: 27272402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptation and constraint in the evolution of Drosophila melanogaster wing shape.
    Gilchrist AS; Azevedo RB; Partridge L; O'Higgins P
    Evol Dev; 2000; 2(2):114-24. PubMed ID: 11258389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lack of response to artificial selection on developmental stability of partial wing shape components in Drosophila melanogaster.
    Tsujino M; Takahashi KH
    Genetica; 2014 Apr; 142(2):177-84. PubMed ID: 24744255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of small Hsp genes on developmental stability and microenvironmental canalization.
    Takahashi KH; Rako L; Takano-Shimizu T; Hoffmann AA; Lee SF
    BMC Evol Biol; 2010 Sep; 10():284. PubMed ID: 20846409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A single basis for developmental buffering of Drosophila wing shape.
    Breuker CJ; Patterson JS; Klingenberg CP
    PLoS One; 2006 Dec; 1(1):e7. PubMed ID: 17183701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Life history evolution and cellular mechanisms associated with increased size in high-altitude Drosophila.
    Lack JB; Yassin A; Sprengelmeyer QD; Johanning EJ; David JR; Pool JE
    Ecol Evol; 2016 Aug; 6(16):5893-906. PubMed ID: 27547363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The contrasting genetic architecture of wing size and shape in Drosophila melanogaster.
    Gilchrist AS; Partridge L
    Heredity (Edinb); 2001 Feb; 86(Pt 2):144-52. PubMed ID: 11380659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of variation and variability under fluctuating, stabilizing, and disruptive selection.
    Pélabon C; Hansen TF; Carter AJ; Houle D
    Evolution; 2010 Jul; 64(7):1912-25. PubMed ID: 20199560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of inbreeding on fluctuating asymmetry of wing veins in two laboratory strains of Drosophila melanogaster.
    Carter AJ; Weier TM; Houle D
    Heredity (Edinb); 2009 Jun; 102(6):563-72. PubMed ID: 19277055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide deficiency mapping of the regions responsible for temporal canalization of the developmental processes of Drosophila melanogaster.
    Takahashi KH; Okada Y; Teramura K
    J Hered; 2011; 102(4):448-57. PubMed ID: 21525178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behavioral differentiation in oviposition activity in Drosophila buzzatii from highland and lowland populations in Argentina: plasticity or thermal adaptation?
    Dahlgaard J; Hasson E; Loeschcke V
    Evolution; 2001 Apr; 55(4):738-47. PubMed ID: 11392392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of heat shock, pretreatment and hsp70 copy number on wing development in Drosophila melanogaster.
    Williams KD; Helin AB; Posluszny J; Roberts SP; Feder ME
    Mol Ecol; 2003 May; 12(5):1165-77. PubMed ID: 12694280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental time and size-related traits in Drosophila buzzatii along an altitudinal gradient from Argentina.
    Sambucetti P; Loeschcke V; Norry FM
    Hereditas; 2006 Dec; 143(2006):77-83. PubMed ID: 17362338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of genes affecting wing patterning through a loss-of-function mutagenesis screen and characterization of med15 function during wing development.
    Terriente-Félix A; López-Varea A; de Celis JF
    Genetics; 2010 Jun; 185(2):671-84. PubMed ID: 20233856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The evolution of larger size in high-altitude Drosophila melanogaster has a variable genetic architecture.
    Sprengelmeyer QD; Lack JB; Braun DT; Monette MJ; Pool JE
    G3 (Bethesda); 2022 Mar; 12(3):. PubMed ID: 35100377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complex constraints on allometry revealed by artificial selection on the wing of Drosophila melanogaster.
    Bolstad GH; Cassara JA; Márquez E; Hansen TF; van der Linde K; Houle D; Pélabon C
    Proc Natl Acad Sci U S A; 2015 Oct; 112(43):13284-9. PubMed ID: 26371319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.