These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
310 related articles for article (PubMed ID: 26755626)
1. Integration of string and de Bruijn graphs for genome assembly. Huang YT; Liao CF Bioinformatics; 2016 May; 32(9):1301-7. PubMed ID: 26755626 [TBL] [Abstract][Full Text] [Related]
2. Integrating long-range connectivity information into de Bruijn graphs. Turner I; Garimella KV; Iqbal Z; McVean G Bioinformatics; 2018 Aug; 34(15):2556-2565. PubMed ID: 29554215 [TBL] [Abstract][Full Text] [Related]
3. Benchmarking of de novo assembly algorithms for Nanopore data reveals optimal performance of OLC approaches. Cherukuri Y; Janga SC BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):507. PubMed ID: 27556636 [TBL] [Abstract][Full Text] [Related]
4. deBGR: an efficient and near-exact representation of the weighted de Bruijn graph. Pandey P; Bender MA; Johnson R; Patro R Bioinformatics; 2017 Jul; 33(14):i133-i141. PubMed ID: 28881995 [TBL] [Abstract][Full Text] [Related]
5. Faucet: streaming de novo assembly graph construction. Rozov R; Goldshlager G; Halperin E; Shamir R Bioinformatics; 2018 Jan; 34(1):147-154. PubMed ID: 29036597 [TBL] [Abstract][Full Text] [Related]
6. cloudSPAdes: assembly of synthetic long reads using de Bruijn graphs. Tolstoganov I; Bankevich A; Chen Z; Pevzner PA Bioinformatics; 2019 Jul; 35(14):i61-i70. PubMed ID: 31510642 [TBL] [Abstract][Full Text] [Related]
7. RMI-DBG algorithm: A more agile iterative de Bruijn graph algorithm in short read genome assembly. Hosseini ZZ; Rahimi SK; Forouzan E; Baraani A J Bioinform Comput Biol; 2021 Apr; 19(2):2150005. PubMed ID: 33866959 [TBL] [Abstract][Full Text] [Related]
8. MBG: Minimizer-based sparse de Bruijn Graph construction. Rautiainen M; Marschall T Bioinformatics; 2021 Aug; 37(16):2476-2478. PubMed ID: 33475133 [TBL] [Abstract][Full Text] [Related]
9. MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads. Namiki T; Hachiya T; Tanaka H; Sakakibara Y Nucleic Acids Res; 2012 Nov; 40(20):e155. PubMed ID: 22821567 [TBL] [Abstract][Full Text] [Related]
10. Assembly of long error-prone reads using de Bruijn graphs. Lin Y; Yuan J; Kolmogorov M; Shen MW; Chaisson M; Pevzner PA Proc Natl Acad Sci U S A; 2016 Dec; 113(52):E8396-E8405. PubMed ID: 27956617 [TBL] [Abstract][Full Text] [Related]
11. Toward perfect reads: self-correction of short reads via mapping on de Bruijn graphs. Limasset A; Flot JF; Peterlongo P Bioinformatics; 2020 Mar; 36(5):1374-1381. PubMed ID: 30785192 [TBL] [Abstract][Full Text] [Related]
12. The MaSuRCA genome assembler. Zimin AV; Marçais G; Puiu D; Roberts M; Salzberg SL; Yorke JA Bioinformatics; 2013 Nov; 29(21):2669-77. PubMed ID: 23990416 [TBL] [Abstract][Full Text] [Related]
13. HyDA-Vista: towards optimal guided selection of k-mer size for sequence assembly. Shariat B; Movahedi NS; Chitsaz H; Boucher C BMC Genomics; 2014; 15 Suppl 10(Suppl 10):S9. PubMed ID: 25558875 [TBL] [Abstract][Full Text] [Related]
14. Coverage-preserving sparsification of overlap graphs for long-read assembly. Jain C Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36892439 [TBL] [Abstract][Full Text] [Related]
15. BASE: a practical de novo assembler for large genomes using long NGS reads. Liu B; Liu CM; Li D; Li Y; Ting HF; Yiu SM; Luo R; Lam TW BMC Genomics; 2016 Aug; 17 Suppl 5(Suppl 5):499. PubMed ID: 27586129 [TBL] [Abstract][Full Text] [Related]
16. PE-Assembler: de novo assembler using short paired-end reads. Ariyaratne PN; Sung WK Bioinformatics; 2011 Jan; 27(2):167-74. PubMed ID: 21149345 [TBL] [Abstract][Full Text] [Related]
17. Clover: a clustering-oriented de novo assembler for Illumina sequences. Hsieh MF; Lu CL; Tang CY BMC Bioinformatics; 2020 Nov; 21(1):528. PubMed ID: 33203354 [TBL] [Abstract][Full Text] [Related]
18. FastEtch: A Fast Sketch-Based Assembler for Genomes. Ghosh P; Kalyanaraman A IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1091-1106. PubMed ID: 28910776 [TBL] [Abstract][Full Text] [Related]
19. deBGA: read alignment with de Bruijn graph-based seed and extension. Liu B; Guo H; Brudno M; Wang Y Bioinformatics; 2016 Nov; 32(21):3224-3232. PubMed ID: 27378303 [TBL] [Abstract][Full Text] [Related]
20. Efficient parallel and out of core algorithms for constructing large bi-directed de Bruijn graphs. Kundeti VK; Rajasekaran S; Dinh H; Vaughn M; Thapar V BMC Bioinformatics; 2010 Nov; 11():560. PubMed ID: 21078174 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]