BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1106 related articles for article (PubMed ID: 26755632)

  • 1. Impact of Different Target Sequences on Type III CRISPR-Cas Immunity.
    Maniv I; Jiang W; Bikard D; Marraffini LA
    J Bacteriol; 2016 Jan; 198(6):941-50. PubMed ID: 26755632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broad Targeting Specificity during Bacterial Type III CRISPR-Cas Immunity Constrains Viral Escape.
    Pyenson NC; Gayvert K; Varble A; Elemento O; Marraffini LA
    Cell Host Microbe; 2017 Sep; 22(3):343-353.e3. PubMed ID: 28826839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recombination between phages and CRISPR-cas loci facilitates horizontal gene transfer in staphylococci.
    Varble A; Meaden S; Barrangou R; Westra ER; Marraffini LA
    Nat Microbiol; 2019 Jun; 4(6):956-963. PubMed ID: 30886355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of CRISPR-Cas system in clinical Staphylococcus epidermidis strains revealed its potential association with bacterial infection sites.
    Li Q; Xie X; Yin K; Tang Y; Zhou X; Chen Y; Xia J; Hu Y; Ingmer H; Li Y; Jiao X
    Microbiol Res; 2016 Dec; 193():103-110. PubMed ID: 27825477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Survey of clustered regularly interspaced short palindromic repeats and their associated Cas proteins (CRISPR/Cas) systems in multiple sequenced strains of Klebsiella pneumoniae.
    Ostria-Hernández ML; Sánchez-Vallejo CJ; Ibarra JA; Castro-Escarpulli G
    BMC Res Notes; 2015 Aug; 8():332. PubMed ID: 26238567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dealing with the evolutionary downside of CRISPR immunity: bacteria and beneficial plasmids.
    Jiang W; Maniv I; Arain F; Wang Y; Levin BR; Marraffini LA
    PLoS Genet; 2013; 9(9):e1003844. PubMed ID: 24086164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity.
    Modell JW; Jiang W; Marraffini LA
    Nature; 2017 Apr; 544(7648):101-104. PubMed ID: 28355179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viral diversity threshold for adaptive immunity in prokaryotes.
    Weinberger AD; Wolf YI; Lobkovsky AE; Gilmore MS; Koonin EV
    mBio; 2012 Dec; 3(6):e00456-12. PubMed ID: 23221803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The CRISPR Spacer Space Is Dominated by Sequences from Species-Specific Mobilomes.
    Shmakov SA; Sitnik V; Makarova KS; Wolf YI; Severinov KV; Koonin EV
    mBio; 2017 Sep; 8(5):. PubMed ID: 28928211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR-Cas-Mediated Phage Resistance Enhances Horizontal Gene Transfer by Transduction.
    Watson BNJ; Staals RHJ; Fineran PC
    mBio; 2018 Feb; 9(1):. PubMed ID: 29440578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperation between Different CRISPR-Cas Types Enables Adaptation in an RNA-Targeting System.
    Hoikkala V; Ravantti J; Díez-Villaseñor C; Tiirola M; Conrad RA; McBride MJ; Moineau S; Sundberg LR
    mBio; 2021 Mar; 12(2):. PubMed ID: 33785624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Friendly Fire: Biological Functions and Consequences of Chromosomal Targeting by CRISPR-Cas Systems.
    Heussler GE; O'Toole GA
    J Bacteriol; 2016 May; 198(10):1481-6. PubMed ID: 26929301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Type III CRISPR-Cas systems can provide redundancy to counteract viral escape from type I systems.
    Silas S; Lucas-Elio P; Jackson SA; Aroca-Crevillén A; Hansen LL; Fineran PC; Fire AZ; Sánchez-Amat A
    Elife; 2017 Aug; 6():. PubMed ID: 28826484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different modes of spacer acquisition by the Staphylococcus epidermidis type III-A CRISPR-Cas system.
    Aviram N; Thornal AN; Zeevi D; Marraffini LA
    Nucleic Acids Res; 2022 Feb; 50(3):1661-1672. PubMed ID: 35048966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of CRISPR/cas system in the development of bacteriophage resistance.
    Szczepankowska A
    Adv Virus Res; 2012; 82():289-338. PubMed ID: 22420856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic characterization of antiplasmid immunity through a type III-A CRISPR-Cas system.
    Hatoum-Aslan A; Maniv I; Samai P; Marraffini LA
    J Bacteriol; 2014 Jan; 196(2):310-7. PubMed ID: 24187086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metagenomic reconstructions of bacterial CRISPR loci constrain population histories.
    Sun CL; Thomas BC; Barrangou R; Banfield JF
    ISME J; 2016 Apr; 10(4):858-70. PubMed ID: 26394009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional Analysis of Porphyromonas gingivalis W83 CRISPR-Cas Systems.
    Burmistrz M; Dudek B; Staniec D; Rodriguez Martinez JI; Bochtler M; Potempa J; Pyrc K
    J Bacteriol; 2015 Aug; 197(16):2631-41. PubMed ID: 26013482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting.
    Goldberg GW; Jiang W; Bikard D; Marraffini LA
    Nature; 2014 Oct; 514(7524):633-7. PubMed ID: 25174707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cas13-induced cellular dormancy prevents the rise of CRISPR-resistant bacteriophage.
    Meeske AJ; Nakandakari-Higa S; Marraffini LA
    Nature; 2019 Jun; 570(7760):241-245. PubMed ID: 31142834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 56.