These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 26755636)

  • 1. Exome sequencing and CRISPR/Cas genome editing identify mutations of ZAK as a cause of limb defects in humans and mice.
    Spielmann M; Kakar N; Tayebi N; Leettola C; Nürnberg G; Sowada N; Lupiáñez DG; Harabula I; Flöttmann R; Horn D; Chan WL; Wittler L; Yilmaz R; Altmüller J; Thiele H; van Bokhoven H; Schwartz CE; Nürnberg P; Bowie JU; Ahmad J; Kubisch C; Mundlos S; Borck G
    Genome Res; 2016 Feb; 26(2):183-91. PubMed ID: 26755636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rare missense variant p.Ala505Ser in the ZAK protein observed in a patient with split-hand/foot malformation from a non-consanguineous pedigree.
    Funk CR; Huey ES; May MM; Peng Y; Michonova E; Best RG; Schwartz CE; Blenda AV
    J Int Med Res; 2020 Apr; 48(4):300060519879293. PubMed ID: 32266845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly efficient targeted mutagenesis in one-cell mouse embryos mediated by the TALEN and CRISPR/Cas systems.
    Yasue A; Mitsui SN; Watanabe T; Sakuma T; Oyadomari S; Yamamoto T; Noji S; Mito T; Tanaka E
    Sci Rep; 2014 Jul; 4():5705. PubMed ID: 25027812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR-Directed Gene Editing Catalyzes Precise Gene Segment Replacement
    Sansbury BM; Wagner AM; Tarcic G; Barth S; Nitzan E; Goldfus R; Vidne M; Kmiec EB
    CRISPR J; 2019 Apr; 2():121-132. PubMed ID: 30998096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Off- and on-target effects of genome editing in mouse embryos.
    Ayabe S; Nakashima K; Yoshiki A
    J Reprod Dev; 2019 Feb; 65(1):1-5. PubMed ID: 30518723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of novel Il2rg-knockout mice with clustered regularly interspaced short palindromic repeats (CRISPR) and Cas9.
    Byambaa S; Uosaki H; Hara H; Nagao Y; Abe T; Shibata H; Nureki O; Ohmori T; Hanazono Y
    Exp Anim; 2020 Apr; 69(2):189-198. PubMed ID: 31801915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid Control of Genome Editing in Human Cells by Chemical-Inducible CRISPR-Cas Systems.
    Liu KI; Ramli MNB; Sutrisnoh NB; Tan MH
    Methods Mol Biol; 2018; 1772():267-288. PubMed ID: 29754234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR-Cas9 Targeting of PCSK9 in Human Hepatocytes In Vivo-Brief Report.
    Wang X; Raghavan A; Chen T; Qiao L; Zhang Y; Ding Q; Musunuru K
    Arterioscler Thromb Vasc Biol; 2016 May; 36(5):783-6. PubMed ID: 26941020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Harnessing CRISPR-Cas systems for bacterial genome editing.
    Selle K; Barrangou R
    Trends Microbiol; 2015 Apr; 23(4):225-32. PubMed ID: 25698413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The application of CRISPR/Cas9 genome editing technology in cancer research].
    Wang DY; Ma N; Hui Y; Gao X
    Yi Chuan; 2016 Jan; 38(1):1-8. PubMed ID: 26787518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Application and optimization of CRISPR/Cas system in bacteria].
    Fu J; Yang F; Xie H; Gu F
    Sheng Wu Gong Cheng Xue Bao; 2019 Mar; 35(3):341-350. PubMed ID: 30912343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The application of genome editing in studying hearing loss.
    Zou B; Mittal R; Grati M; Lu Z; Shu Y; Tao Y; Feng Y; Xie D; Kong W; Yang S; Chen ZY; Liu X
    Hear Res; 2015 Sep; 327():102-8. PubMed ID: 25987504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system.
    Liang Z; Zhang K; Chen K; Gao C
    J Genet Genomics; 2014 Feb; 41(2):63-8. PubMed ID: 24576457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas9-mediated genome editing of splicing mutation causing congenital hearing loss.
    Ryu N; Kim MA; Choi DG; Kim YR; Sonn JK; Lee KY; Kim UK
    Gene; 2019 Jun; 703():83-90. PubMed ID: 30898719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/Cas9-mediated genome editing induces gene knockdown by altering the pre-mRNA splicing in mice.
    Tang JX; Chen D; Deng SL; Li J; Li Y; Fu Z; Wang XX; Zhang Y; Chen SR; Liu YX
    BMC Biotechnol; 2018 Oct; 18(1):61. PubMed ID: 30285700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Harnessing the native type I-B CRISPR-Cas for genome editing in a polyploid archaeon.
    Cheng F; Gong L; Zhao D; Yang H; Zhou J; Li M; Xiang H
    J Genet Genomics; 2017 Nov; 44(11):541-548. PubMed ID: 29169919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AAV-Mediated CRISPR/Cas Gene Editing of Retinal Cells In Vivo.
    Hung SS; Chrysostomou V; Li F; Lim JK; Wang JH; Powell JE; Tu L; Daniszewski M; Lo C; Wong RC; Crowston JG; Pébay A; King AE; Bui BV; Liu GS; Hewitt AW
    Invest Ophthalmol Vis Sci; 2016 Jun; 57(7):3470-6. PubMed ID: 27367513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment.
    Kennedy EM; Cullen BR
    Virology; 2015 May; 479-480():213-20. PubMed ID: 25759096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zygote-mediated generation of genome-modified mice using Streptococcus thermophilus 1-derived CRISPR/Cas system.
    Fujii W; Kakuta S; Yoshioka S; Kyuwa S; Sugiura K; Naito K
    Biochem Biophys Res Commun; 2016 Aug; 477(3):473-6. PubMed ID: 27318086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.