These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Interleukin-17A enhances host defense against cryptococcal lung infection through effects mediated by leukocyte recruitment, activation, and gamma interferon production. Murdock BJ; Huffnagle GB; Olszewski MA; Osterholzer JJ Infect Immun; 2014 Mar; 82(3):937-48. PubMed ID: 24324191 [TBL] [Abstract][Full Text] [Related]
6. CARD9 Is Required for Classical Macrophage Activation and the Induction of Protective Immunity against Pulmonary Cryptococcosis. Campuzano A; Castro-Lopez N; Martinez AJ; Olszewski MA; Ganguly A; Leopold Wager C; Hung CY; Wormley FL mBio; 2020 Jan; 11(1):. PubMed ID: 31911495 [TBL] [Abstract][Full Text] [Related]
7. Scavenger Receptor MARCO Orchestrates Early Defenses and Contributes to Fungal Containment during Cryptococcal Infection. Xu J; Flaczyk A; Neal LM; Fa Z; Eastman AJ; Malachowski AN; Cheng D; Moore BB; Curtis JL; Osterholzer JJ; Olszewski MA J Immunol; 2017 May; 198(9):3548-3557. PubMed ID: 28298522 [TBL] [Abstract][Full Text] [Related]
8. In vivo role of dendritic cells in a murine model of pulmonary cryptococcosis. Wozniak KL; Vyas JM; Levitz SM Infect Immun; 2006 Jul; 74(7):3817-24. PubMed ID: 16790753 [TBL] [Abstract][Full Text] [Related]
9. Disseminated Cryptococcosis Due to Anti-Granulocyte-Macrophage Colony-Stimulating Factor Autoantibodies in the Absence of Pulmonary Alveolar Proteinosis. Kuo CY; Wang SY; Shih HP; Tu KH; Huang WC; Ding JY; Lin CH; Yeh CF; Ho MW; Chang SC; He CY; Chen HK; Ho CH; Lee CH; Chi CY; Ku CL J Clin Immunol; 2017 Feb; 37(2):143-152. PubMed ID: 28013480 [TBL] [Abstract][Full Text] [Related]
10. STAT1 signaling is essential for protection against Cryptococcus neoformans infection in mice. Leopold Wager CM; Hole CR; Wozniak KL; Olszewski MA; Wormley FL J Immunol; 2014 Oct; 193(8):4060-71. PubMed ID: 25200956 [TBL] [Abstract][Full Text] [Related]
11. Disruption of Early Tumor Necrosis Factor Alpha Signaling Prevents Classical Activation of Dendritic Cells in Lung-Associated Lymph Nodes and Development of Protective Immunity against Cryptococcal Infection. Xu J; Eastman AJ; Flaczyk A; Neal LM; Zhao G; Carolan J; Malachowski AN; Stolberg VR; Yosri M; Chensue SW; Curtis JL; Osterholzer JJ; Olszewski MA mBio; 2016 Jul; 7(4):. PubMed ID: 27406560 [TBL] [Abstract][Full Text] [Related]
12. Macrophage tumor necrosis factor-alpha induces epithelial expression of granulocyte-macrophage colony-stimulating factor: impact on alveolar epithelial repair. Cakarova L; Marsh LM; Wilhelm J; Mayer K; Grimminger F; Seeger W; Lohmeyer J; Herold S Am J Respir Crit Care Med; 2009 Sep; 180(6):521-32. PubMed ID: 19590023 [TBL] [Abstract][Full Text] [Related]
13. Early or late IL-10 blockade enhances Th1 and Th17 effector responses and promotes fungal clearance in mice with cryptococcal lung infection. Murdock BJ; Teitz-Tennenbaum S; Chen GH; Dils AJ; Malachowski AN; Curtis JL; Olszewski MA; Osterholzer JJ J Immunol; 2014 Oct; 193(8):4107-16. PubMed ID: 25225664 [TBL] [Abstract][Full Text] [Related]
14. Chitin recognition via chitotriosidase promotes pathologic type-2 helper T cell responses to cryptococcal infection. Wiesner DL; Specht CA; Lee CK; Smith KD; Mukaremera L; Lee ST; Lee CG; Elias JA; Nielsen JN; Boulware DR; Bohjanen PR; Jenkins MK; Levitz SM; Nielsen K PLoS Pathog; 2015 Mar; 11(3):e1004701. PubMed ID: 25764512 [TBL] [Abstract][Full Text] [Related]
15. Cytokine enhancement of complement-dependent phagocytosis by macrophages: synergy of tumor necrosis factor-alpha and granulocyte-macrophage colony-stimulating factor for phagocytosis of Cryptococcus neoformans. Collins HL; Bancroft GJ Eur J Immunol; 1992 Jun; 22(6):1447-54. PubMed ID: 1601035 [TBL] [Abstract][Full Text] [Related]
16. Interleukin-17 is not required for classical macrophage activation in a pulmonary mouse model of Cryptococcus neoformans infection. Hardison SE; Wozniak KL; Kolls JK; Wormley FL Infect Immun; 2010 Dec; 78(12):5341-51. PubMed ID: 20921149 [TBL] [Abstract][Full Text] [Related]
17. Effect of granulocyte-macrophage colony-stimulating factor on rat alveolar macrophage anticryptococcal activity in vitro. Chen GH; Curtis JL; Mody CH; Christensen PJ; Armstrong LR; Toews GB J Immunol; 1994 Jan; 152(2):724-34. PubMed ID: 8283047 [TBL] [Abstract][Full Text] [Related]
18. Cryptococcal heat shock protein 70 homolog Ssa1 contributes to pulmonary expansion of Cryptococcus neoformans during the afferent phase of the immune response by promoting macrophage M2 polarization. Eastman AJ; He X; Qiu Y; Davis MJ; Vedula P; Lyons DM; Park YD; Hardison SE; Malachowski AN; Osterholzer JJ; Wormley FL; Williamson PR; Olszewski MA J Immunol; 2015 Jun; 194(12):5999-6010. PubMed ID: 25972480 [TBL] [Abstract][Full Text] [Related]
19. An mRNA atlas of G protein-coupled receptor expression during primary human monocyte/macrophage differentiation and lipopolysaccharide-mediated activation identifies targetable candidate regulators of inflammation. Hohenhaus DM; Schaale K; Le Cao KA; Seow V; Iyer A; Fairlie DP; Sweet MJ Immunobiology; 2013 Nov; 218(11):1345-53. PubMed ID: 23948647 [TBL] [Abstract][Full Text] [Related]
20. STAT1 signaling within macrophages is required for antifungal activity against Cryptococcus neoformans. Leopold Wager CM; Hole CR; Wozniak KL; Olszewski MA; Mueller M; Wormley FL Infect Immun; 2015 Dec; 83(12):4513-27. PubMed ID: 26351277 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]