These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 26756165)
1. Antenna Biphenols: Development of Extended Wavelength Chiroptical Reporters. Bentley KW; Joyce LA; Sherer EC; Sheng H; Wolf C; Welch CJ J Org Chem; 2016 Feb; 81(3):1185-91. PubMed ID: 26756165 [TBL] [Abstract][Full Text] [Related]
2. Optical Chirality Sensing with a Stereodynamic Aluminum Biphenolate Probe. De Los Santos ZA; Joyce LA; Sherer EC; Welch CJ; Wolf C J Org Chem; 2019 Apr; 84(8):4639-4645. PubMed ID: 30019902 [TBL] [Abstract][Full Text] [Related]
3. Chirality sensing of amines, diamines, amino acids, amino alcohols, and α-hydroxy acids with a single probe. Bentley KW; Nam YG; Murphy JM; Wolf C J Am Chem Soc; 2013 Dec; 135(48):18052-5. PubMed ID: 24261969 [TBL] [Abstract][Full Text] [Related]
4. Chirality sensing with stereodynamic copper(I) complexes. De Los Santos ZA; Legaux NM; Wolf C Chirality; 2017 Nov; 29(11):663-669. PubMed ID: 28902429 [TBL] [Abstract][Full Text] [Related]
5. A Diastereodynamic Probe Transducing Molecular Length into Chiroptical Readout. Bravin C; Mason G; Licini G; Zonta C J Am Chem Soc; 2019 Jul; 141(30):11963-11969. PubMed ID: 31269796 [TBL] [Abstract][Full Text] [Related]
7. Chirality sensing using stereodynamic probes with distinct electronic circular dichroism output. Wolf C; Bentley KW Chem Soc Rev; 2013 Jun; 42(12):5408-24. PubMed ID: 23482984 [TBL] [Abstract][Full Text] [Related]
8. Enantioselective sensing of amines based on [1 + 1]-, [2 + 2]-, and [1 + 2]-condensation with fluxional arylacetylene-derived dialdehydes. Iwaniuk DP; Wolf C Org Lett; 2011 May; 13(10):2602-5. PubMed ID: 21504202 [TBL] [Abstract][Full Text] [Related]
9. A Data-Driven Approach to the Development and Understanding of Chiroptical Sensors for Alcohols with Remote γ-Stereocenters. Dotson JJ; Anslyn EV; Sigman MS J Am Chem Soc; 2021 Nov; 143(45):19187-19198. PubMed ID: 34735763 [TBL] [Abstract][Full Text] [Related]
10. Shell-programmed Au nanoparticle heterodimers with customized chiroptical activity. Zhao Y; Xu L; Ma W; Liu L; Wang L; Kuang H; Xu C Small; 2014 Nov; 10(22):4770-7. PubMed ID: 25136975 [TBL] [Abstract][Full Text] [Related]
11. Induced chiroptical changes of a water-soluble cryptophane by encapsulation of guest molecules and counterion effects. Bouchet A; Brotin T; Cavagnat D; Buffeteau T Chemistry; 2010 Apr; 16(15):4507-18. PubMed ID: 20235244 [TBL] [Abstract][Full Text] [Related]
12. Predictive chirality sensing via Schiff base formation. Pilicer SL; Mancinelli M; Mazzanti A; Wolf C Org Biomol Chem; 2019 Jul; 17(27):6699-6705. PubMed ID: 31243416 [TBL] [Abstract][Full Text] [Related]
13. Chirality sensing with stereodynamic biphenolate zinc complexes. Bentley KW; de Los Santos ZA; Weiss MJ; Wolf C Chirality; 2015 Oct; 27(10):700-7. PubMed ID: 26299373 [TBL] [Abstract][Full Text] [Related]
14. Determining the absolute configuration of two marine compounds using vibrational chiroptical spectroscopy. Hopmann KH; Šebestík J; Novotná J; Stensen W; Urbanová M; Svenson J; Svendsen JS; Bouř P; Ruud K J Org Chem; 2012 Jan; 77(2):858-69. PubMed ID: 22148737 [TBL] [Abstract][Full Text] [Related]
15. Chiroptical sensing of citronellal: systematic development of a stereodynamic probe using the concept of isostericity. Iwaniuk DP; Wolf C Chem Commun (Camb); 2012 Nov; 48(91):11226-8. PubMed ID: 23064632 [TBL] [Abstract][Full Text] [Related]
16. Chiroptical Asymmetric Reaction Screening via Multicomponent Self-Assembly. De Los Santos ZA; Wolf C J Am Chem Soc; 2016 Oct; 138(41):13517-13520. PubMed ID: 27696842 [TBL] [Abstract][Full Text] [Related]